
XMLlab 1 : a pluridisciplinary simulation tool
based on XML and Scilab

Stéphane Mottelet2, André Pauss3

Abstract

We present an XML-based simulation authoring envi-
ronment. The proposed description language allows to
describe mathematical objects such as systems of ordi-
nary differential equations, systems of non-linear equa-
tions, partial differential equations in two dimensions,
or simple curves and surfaces. It also allows to describe
the parameters on which these objects depend. This
language is independent of the software and allows to
ensure the perennity of author’s work, as well as col-
laborative work and content reuse. We also describe
the architecture of a “compilation chain” allowing to
transform the XML files into Scilab scripts.

Keywords : simulation, interoperability

Résumé

Nous présentons un environnement de génération auto-
matique de simulations entièrement basé sur les tech-
nologies XML. Le langage de description proposé
permet de décrire des objets mathématiques tels que
des systèmes d’équations différentielles, des systèmes
d’équations non-linéaires, des équations aux dérivées
partielles en dimension 2, ou bien de simples courbes
et surfaces. Il permet aussi de décrire les paramètres
dont dépendent ces objets. Ce langage est indépendant
du logiciel et permet donc de garantir la pérennité du
travail des auteurs ainsi que leur mutualisation et leur
réutilisation. Nous décrivons aussi l’architecture d’une
“chaîne de compilation” permettant de transformer ces
fichiers XML sous forme de scripts et de les faire fonc-
tionner dans le logiciel Scilab.

1http://xmllab.org
2Laboratoire de Mathématiques Appliquées de Compiègne,

Département de Génie Informatique, Université de Technologie de
Compiègne, BP 20529, 60205 COMPIEGNE CEDEX, FRANCE;
stephane.mottelet@utc.fr

3UMR Génie des Procédés Industriels, Département
de Génie Chimique, Université de Technologie de Com-
piègne, BP 20529, 60205 COMPIEGNE CEDEX, FRANCE;
andre.pauss@utc.fr

Mots-clés: simulation, interopérabilité

1 Introduction

The need to use a simulation tool is in most cases an
answer to simple statements : the user has some equa-
tions modeling a physical system. He wants to solve
them, and if possible to be able to easily change some
parameters to see how they influence the results of the
simulation and finally save the parameters and the re-
sults (e.g. in a format readable by a spreadsheet appli-
cation).

The educational benefit of using simulations, when an
adequate tool is used, is not to be discussed here. But
there are very different steps in the development of a
simulation. Once the equations are stated, you firstly
have to make them fit to a particular software, provi-
ded this software is adequate to the disciplinary field of
the phenomenon. This first step is not time-consuming
compared to the time which is always spent to deve-
lop a graphical user interface. The author will spent
the greater part of his time to polish the interface, al-
though he could have spent this time to work on ano-
ther simulation. Moreover, the more the applet will be
polished to fit a particular case, the less it will be reu-
sable in another close context. The World Wide Web is
a place where a lot of good quality JAVA applets can be
found, but these applets are always difficult to reuse in
the context of a particular course, because modifying
them (when the author makes the source code avai-
lable) needs abilities in a low level language (JAVA,
C++, C), or a high level script language such as the
one used by Matlab or Scilab ([Chancelier et al., 2001,
Gomez, 1999, Motta Pires and Rogers, 2002]).

This kind of work is the concern of craftsmen, and not
of an industrial approach. The author’s work is not reu-
sable in general and its perennity is not guaranteed, be-
cause the work relies on an application using a proprie-
tary format, and last but not least, the work is exchan-
geable with authors using the same application (and in
many cases the same version).



People working on modern documentary applica-
tions have already made this reflexion, and this can
be seen with the exponential growth of the num-
ber of applications of the XML markup language
([Bray et al., 2004]). In the field of simulation applets
this reflexion has hardly begun. One can cite, in the
field of biology and chemistry, the work of a consor-
tium of academic people and authors of simulation
software which has lead tosbml , and exchange mar-
kup language modeling biological and chemical sys-
tems (with kinetics) using XML ([Hucka et al., 2003,
Hucka and Finney, 2003]).

Another project is xmds, a tool also based on
XML allowing to generate Scilab, Matlab or C++
code (but without any graphical user inteface) allo-
wing to simulate deterministic or stochastic systems
([Collecutt et al., 2001]). Compared to our approach,
which will detailed in this paper, the weakness of this
tool is a lack of structuration in the description lan-
guage (the level of structuration is not deep enough
compared to what XML allows to do).

In the scope of the XMLlab project, we have chosen to
show the benefits of an approach where the content and
the form are well differentiated and are the concern of
different people :

The content The equations of the phenomenon, their
description, the associated parameters and their the-
matic organization. The description of the content is
the concern of the author.

The form The graphical user interface, the various
“widgets” and menus which reinforce the user-
friendliness of the final applet, and the visualization
tools (e.g. curves and animations). This part of the
applet code is the concern of a high level developer,
or the concern of a tool able to generate this code au-
tomatically from the description of the content. This
is the option we have chosen.

The choice of adequate numerical methods is another
problem. The author is not necessarily able to make
this choice himself, that’s why this choice has to be
done automatically, knowing which method is the most
adequate to solve a given type of equation.

The purpose of the XMLlab project was not to de-
fine a description language by its own, hence we
have chosen a particular “target” application in the
early phases of the project. This application is Sci-
lab, an open sourcesoftware developed since 1990

by researchers of INRIA and ENPC. Our goal was
to develop a complete “compilation chain”, allowing
to transform the source XML documents into execu-
table scripts interpreted by the target application. Mo-
reover, the choice of Scilab is motivated by the fact
that this software allows to use the Tcl/Tk script lan-
guage ([Ousterhout, 1998, Ousterhout, 1994]) to gene-
rate graphical user interfaces.

2 A preview of the structure of an XMLlab
simulation

A simulation can be divided in a certain number of
conceptual elements : parameters, mathematical mo-
dels of objects (time-dependent or not) and finally a
display element to output the results of the simulation.

2.1 Parameters
They are the parameters of the phenomenon and of the
mathematical model. The goal is to allow the user of
the simulation to make them vary by means of the inter-
face which will be generated by the compilation chain.
It has to be possible to simply specify if the value of the
parameter is seen in the interface, but non modifiable
by the user. There must also exist hidden parameters,
for internal use only.

Scalars and matrices In an XMLlab simulation the
parameters can be scalars or matrices. The minimum
and maximum value of a scalar can be given, the
type of “widget” to use (a slider, or a simple en-
try field where the user can modify the value). Each
parameter must have symbolic name which can be
reused in the description of the mathematical model,
and a default value, which will be used for the first
run of the simulation.

Parameter groups The parameters can be grouped
into sections, e.g. for an ordinary differential equa-
tion, the user may want to differentiate the physi-
cal parameters of the phenomenon from the resolu-
tion parameters (final time, number of discretization
steps, etc.). This logical structuration can be then
used to graphically structure the interface.

DatabasesThe user can store many instances of a
parameter group. This allows, e.g. in chemistry, to
build a small database of different acids and al-
kali, by storing their parameters (acidity constants,
charge, etc.). The database can then be used to ge-
nerate a menu allowing to choose a given parameter
group in the interface.



2.2 Mathematical models
We now deal with the equations of the phenomenon to
be simulated. There are elements of different levels.

Domains The most simple describe intervals ofR or
domains ofR2. They are simple closed intervals of
the type[a, b] (where the bounds can of course de-
pend on parameters described in the previous sec-
tion) or two dimensional domains. The latter can be
rectangles defined by a Cartesian product of two in-
tervals, or general domains defined by the form of
their boundary by parametric curves (we will dis-
cuss curves in the next item). The user can precise
the way these domains have to be discretized, if ap-
plicable (number of discretization points, linearly or
logarithmically).

Curves and surfacesNon-parametric curves can be
described like this,

y = f (x), x ∈ [a, b].

This definition reuses an interval. This way, it is pos-
sible to define many curves referring to the same in-
terval.
Parametric curves can be also defined like this,

x = f (t),
y = g(t),
t ∈ [a, b].

The surfaces can also be of parametric or non-
parametric type, namely

z = f (x, y), (x, y) ∈ D,

whereD is a domain ofR2, or
x = f (u, v),
y = g(u, v),
z = h(u, v)

(u, v) ∈ D.

The parameters defined in the previous section can
be used at any level, in the definition of domains or
in the equations themselves.

Ordinary differential equations One can describe
systems of ordinary differential equations, e.g.

d
dtx(t) = f (x, y, t),
d
dty(t) = g(x, y, t),

t ∈ [a, b],

with given initial conditionsx(a) = xa andy(a) =
ya. XMLlab allows to keep the natural description,

without having to reformulate each unknownx(t) or
y(t) as the element of a vectorX(t) with x(t) = X1(t)
and y(t) = X2(t). The chosen description model
consists in :
– A time interval (here[a, b])
– A list of “states”. For each state (herex or y), its

time-derivative and its initial value are given.
– A list of “outputs”. They are observations which

can be computed by using the states, e.g.z(t) =
x(t) + y(t).

Non linear equations General systems of non-linear
equations can be described, namely

f (x, y, z, t, · · · ) = 0,
h(x, y, z, t, · · · ) = 0,

· · ·

or non-linear equations depending on a parameter
varying in an interval, of the form{

f (x, y) = 0
x ∈ [a, b],

allowing to take into account some curves defined
by an implicit equation of the typef (x, y) = 0. This
kind of equation is used in the modeling of acid-
alkali titration.

Partial differential equations XMLlab allows to
describe partial differential equations of diffusion
type, namely{
−div (Pgrad u) (x) + c(x)u(x) = f (x), x ∈ Ω,

+boundary conditions

The domainΩ is described from its boundary (pa-
rametric curves, defined earlier). We will give some
details on the numerical methods in the next section.
Here again, the parameters can be used at any level,
in the definition of the domainΩ or in the physical
data (diffusion matrixP, source termf (x), propor-
tional coefficientc(x)).

2.3 Results display
We use a classical hierarchical description, using win-
dows and systems of axes, where the user just has to
precise what he wants to display by making reference
to objects defined in the “Mathematical models” sec-
tion.

Windows A window contains systems of axes. The
user just has to specify how they have to be placed
if they are more than one (the window is divided wi-
thin its height and width).



System of axesThe user has to specify if the system
is two or three dimensional. Each system of axes
contains some references to what has to be repre-
sented.

Objects to be representedReference can be made to
a curve, to a surface or to the state of an equation, by
means of its symbolic name. The chosen structure al-
lows to greatly simplify the number of different ele-
ments. For example, a surface can be referenced in a
two or three dimensional system of axes. In a three
dimensional system a perspective projection is used,
although in two dimensions we use a pseudo-color
planar representation. In both cases, the reference to
the surface is made identically, only the the “parent”
context is changing.

<?xml version="1.0"
encoding="ISO-8859-1"?>

<!DOCTYPE simulation
SYSTEM "simulation.dtd">

<simulation>
<header>

...
</header>
<notes>

...
</notes>

<parameters>
...

</parameters>
<compute>

...
</compute>
<display>

...
</display>

</simulation>

FIG . 1: The outline of a simulation showing the high-level
elements.

3 An example simulation

We give on the figure 1 the skeleton of a simulation do-
cument. We will now explain with details how to build
this document to describe a small simulation.

We consider the pendulum depicted on figure 2. We
make the hypothesis that the line connecting the sphere
of massM to the rotation axis is of negligible mass
compared toM. We measure the deviation of the pen-
dulum from the stable vertical equilibrium position by

L

θ(t)

FIG . 2: The pendulum

the angleθ(t) positively measured as indicated on fi-
gure 2. If one applies the relations of dynamics for bo-
dies under rotations, we obtain the following ordinary
differential equation :

θ̈(t) = −g
L

sin θ(t), t ∈ [0, T]

θ(0) = θ0,
θ̇(0) = 0.

The value ofθ0 gives the initial angular deviation of
the pendulum, and we consider that the initial angular
velocity is zero. Ifθ0 is small,θ(t) can be approximated
by

φ(t) = θ0 cos
(√

g
L

t

)
.

We will show how to traduce all this into XML ele-
ments, by proceeding in the order of the elements re-
presented in figure 1.

3.1 Parameters,parameters elements
We have to take into account the physical parameters
g, L, θ0, and the final timeT. The following XML code
fragment allows to describe these parameters :

<parameters>
<title>Parameters of the

pendulum</title>
<scalar label="L" unit="m">

<name>Length of the pendulum</name>
<value>1</value>

</scalar>
<scalar label="g0" unit="ms^-2">

<name>Gravity</name>



<value>9.81</value>
</scalar>
<scalar label="theta_0" max="3.141"

min="0.01" unit="rad"
increment="0.001"
widget="slider">

<name>Initial angle</name>
<value>0.1</value>

</scalar>
</parameters>
<parameters>

<title>Resolution parameters
</title>
<scalar label="T" unit="s">

<name>Final time</name>
<value>2</value>

</scalar>
</parameters>

Each pair ofparameter elements allows to group
parameters. Thescalar element represents a scalar
parameter, containing its full name in thename ele-
ment and its initial value in the elementvalue . A
scalar element has a mandatorylabel attribute
containing its symbolic name, which will eventually
used in thevalue elements of other elements. The
widget attribute with value"slider" means that
the parameter will be modifiable by a slider.

3.2 Mathematical models,compute element
Here are the fragments corresponding to the descrip-
tion of the[0, T] interval,

<defdomain1d label="t" unit="s">
<name>time</name>
<interval>

<initialvalue>0</initialvalue>
<finalvalue>T</finalvalue>

</interval>
</defdomain1d>

and to the description of the differential equation :

<ode label="pendulum">
<refdomain1d ref="t"/>
<states>

<state label="theta"
unit="rad">

<name>Real solution</name>

<derivative>theta_point
</derivative>
<initialcond>theta_0
</initialcond>

</state>
<state label="theta_point"

unit="rad/s">
<name>Derivative of

the angle</name>
<derivative>-g0/L*sin(theta)
</derivative>
<initialcond>0</initialcond>

</state>
</states>
<outputs>

<output label="theta_lin">
<name>Harmonic solution</name>
<value>theta_0*cos(sqrt(g0/L)*t)
</value>

</output>
</outputs>

</ode>

The ode element (ordinary differential equation)
contains an empty elementrefdomain1d refer-
ring to the [0, T] interval (defined earlier by the
defdomain1d element, referred by the attribute
ref ), and thus defining the symbolic name of the in-
tegration variable, astates element containing the
description of each state (θ andθ̇) in astate element.
Eachstate element contains the name of the state,
its time-derivativederivative and its initial value
initialcond . The last elementoutputs in ode
is a list of outputs. Here, the sole output explicitly de-
pends on time but does not depend on the states. Each
state or output has a mandatory attributelabel which
will be referred in the display section.

3.3 Display of results,display element
We want to superimpose two curves in the same axes
system :

<display>
<window>

<title>Comparison of the two
solutions</title>

<axis2d>
<drawcurve2d ref="theta"/>
<drawcurve2d ref="thetalin"/>

</axis2d>



</window>
<display>

The display element contains only onewindow
element, containing itself a two dimensional system
of axes. The twodrawcurve2d elements within the
sameaxis2d mean that the curves ofθ and its har-
monic version will be superimposed.

3.4 Remarks
The different structuration possibilities are constrained
by a DTD (Document Type Definition), allowing ana
posteriorivalidation of a simulation, or can be used to
constrain the edition of a simulation by means of an
XML editor. The figure 3 shows the view that the user
can have of its XML file.

FIG . 3: The XML file describing the simu-
lation of the pendulum, seen in the
XXE editor, developed by PIXWARE,
http ://www.xmlmind.com/xmleditor

Within all of the above mentioned elements, some have
a particular status. Thenameandtitle elements can
appear several times, with a differentlang attribute
(french or english in XMLlab 1.3). The goal is to
be able to generate from the same XML file two dif-
ferent versions of the “compiled” applet, the language
to use being specified as a compilation option.

The header element contains some meta-data such
as the name of the author and some keywords. The
notes element can appear several times with a dif-

ferent lang attribute and allows to write a few pa-
ragraphs of text allowing to describe the simulation
and/or to give some help to the user.

4 The compilation chain

4.1 Some details
The compilation chain is entirely based on an XML
technology : it is based on XSL transformations spe-
cified in XSL stylesheets (eXtensible Stylesheet Lan-
guage). These transformations are applied to the simu-
lation file by an “XSL processor”. The XSL technology
is well known to allow the display of dynamic HTML
on the World Wide Web, but it is also well fitted to the
automatic generation of scripts. We are here particu-
larly interested in the script langage of Scilab or Mat-
lab, and the script language Tcl/Tk, allowing to des-
cribe graphical user interfaces.

pendule.xml

pendulum.tkml pendulum.sciml

pendulum.tk pendulum.sce

sciml.xsltkml.xsl

tk.xsl scilab.xsl

pendulum.xml

User interface Computations and display

FIG . 4: Diagram of the compilation chain. The arrows
represent the XSL transformations, and the italic
names the associated stylesheets.

The different phases of the compilation are outlined on
the diagram depicted on figure 4. In the bottom of the
diagram, thependulum.sce file is the Scilab script
containing all the computation code, and the display of
results. Thependulum.tk file contains the Tcl/Tk
code of the interface. The diagram illustrates the fact
that the transformation is not direct and needs an inter-
mediary step ; this particular point needs an explana-
tion.

To allow an easy maintenance of the xsl stylesheets,



and especially to allow a smooth change of target
languages (Scilab and Tcl/Tk), we have used “pivot”
XML dialects : the code is generated in a two-step pro-
cess. We use XSL transformation to translate XML in-
put into a pseudo-Tcl/Tk and pseudo-Scilab syntax that
IS XML. Then we use a second pass to serialize the
pseudo-language XML into the target language. The
advantage here is that the second pass captures all the
complexities of formatting clean code (syntax) while
the first pass concentrates on the logical aspects of the
translation (semantics).

tkml As far as the interface Tcl/Tk code is concer-
ned (left side of the diagram), the intermediary file
pendulum.tkml is an XML file containing a logi-
cal description of the interface. This file contains the
description of the different widgets (buttons, etc.)
and their placement with respect to each other. Then,
this intermediate file is finally translated in Tcl/Tk
by means of a last XSL transformation.

sciml For the Scilab code generation, we proceed in
the same manner : we first generate an intermediary
file pendulum.sciml , written using a pseudo-
Scilab markup, and then transform this file to Scilab
code with a last transformation.

Two ways of distribution can be used : the two Tcl/Tk
and Scilab files can be later used without using the
XML source and the compilation chain (thus protecting
the author’s work). However, it would be more profi-
table to the community to release the XML source.

The whole compilation chain together with Scilab (ex-
cept the XML editor), uses only open-source soft-
ware packages (xsltproc of the Gnome project, Tcl
scripts), and works on any platform (Windows, MacOs
X, Unix).

4.2 Comments on the example
We make some comments on the figure 5.

User interface The window of the interface has a
central space where appear the widgets allowing
to change parameters. TheParameters menu
contains two items named “Parameters of the pen-
dulum” and “Resolution parameters” corresponding
to the two parameters groups specified in the XML
file. The user just has to select a given item to display
the corresponding parameter group.
The File menu contains two interesting items :
“Save a session” and “Load a session”. They allow
to save the values of parameters in a text file, and to

FIG . 5: The interface and the display window for the pen-
dulum simulation

load them later. It allows to resume a working ses-
sion (otherwise the Scilab script always starts with
the initial values of parameters).
The XMLlab menu gives some information on the
XMLlab project (“About XMLlab” item), and some
information on the simulation, extracted from the
header element : name of the author, date and
eventual notes describing the simulation (“About
this simulation” item).

Graphical window The legend of the two curves is
taken from thename elements within the states
theta and the outputtheta_lin . The abscissa
label is the name of the time variablet , and the or-
dinate label is the unit (unit attribute of element
<state label="theta" ).
This window belongs to Scilab, thus the user has ac-
cess to the usual menus allowing to save (e.g. in EPS
format) or print the figure.

The user has always the possibility to have access to all
variables of the simulation from the Scilab’s command
line (parameters and results of the simulation), which
remains available during the simulation.

Remark on performancesFor this particular example
(a system of two scalar ordinary differential equations),



the computation time is negligible compared to the
time elapsed by drawing the curves, and hence the user
can see the immediate effect of the initial angle on
the synchronization of the curves. For more intensive
examples (e.g. resolution of a partial differential equa-
tion), the response time can be greater, but the reac-
tivity of the system is always good, even on a light-
weight system (1Ghz Pentium). For these reasons Sci-
lab is really appreciated, because the built-in functions
are well optimized (linear and nonlinear equations sol-
ving, differential equations, sparse matrix algebra, vec-
torization of elementary functions for arrays, etc.). Mo-
reover, Scilab loads in a negligible time (compared to
the important startup time of recent versions of Matlab,
because of the use of JAVA for the user interface).

5 Trends and conclusions

The different parameters types and the mathematical
objects presented in section 2 are already present in
XMLlab 1.3, but XMLlab is a work in constant pro-
gress, and many extensions and improvements are ne-
cessary.

However, we think that the choices we have made are
good, especially concerning the structuration of the
simulations and the architecture of the compilations
chain. The needed development time to add a new
type of equation is always modest. For example, the
stationary-pde element, allowing to describe an
elliptic partial differential equation (extension of the
DTD and associated XSL stylesheet sections), has been
developed in two days (we rely on a Scilab “PDE tool-
box”).

Future developments The priorities are the following
– Discrete time systems simulation,
– Stochastic systems,
– Animations.
As far as the edition of the XML files is concer-
ned, we plan to use “Cascading Stylesheets” allo-
wing to edit XML files in a very user-friendly way
in the XXE editor (see [Bos et al., 1998]). We also
plan to migrate the actual DTD to an XML Schema
([Thompson et al., 2000]), to allow some enhance-
ments in the control of validity of the different data
types contained in elements and attributes.

Disciplinary fields Simulations have been written in
the fields of biology (microbial and enzymatic kine-
tics), physics (pendulum, oscillators, two-body sys-
tem, Poisson equation, etc.), chemistry (Acid/Alkali

equilibriums, chemical kinetics), chemical enginee-
ring (ideal reactors). We wish to extend the scope of
XMLlab to new disciplinary fields.

Use of XMLlab in the chemistry courses XMLlab
has been used for 3 years in chemistry courses at
the UTC (150 students by semester), under the form
of demonstrations during the course, and during
the labs, together with experimental acid/alkali
titrations. With the help of simulation the students
interpret the experimental curves and are able to
answer reasoning questions. The software is also
available in the UTC intranet to allow students to
improve their understanding of phenomenons. A
sample survey has been made by e-mail at the end
of each semester and allowed us to conclude that :
– The software is easy to use, and students do not

encounter major technical problems.
– The software allows a better understanding of

complex phenomenon and acid/alkali equili-
brium.

– High level labs assistants are needed (they must
be trained on the software before the labs).

– The software is rarely used by the students outside
the labs hours.

License XMLlab is available at the address
http://xmllab.org , under the form of a
Scilab toolbox under the GPL license. We hope that
a lot of people will contribute and request some new
features, which will help us to make XMLlab fit to
new disciplinary fields.

Acknowledgments

This work has been financed by the groupment “Eva-
luation of New Technologies in Education” of the re-
gional Council of Research from Picardie. IUFM’s tea-
chers and Jules Vernes University of Picardie Profes-
sors have contributed efficiently to the trandisciplina-
rity of this project.

References
[Bos et al., 1998] Bos, B., Wium Lie, H., Lilley, C.,
and Jacobs, I. E. (1998). ascading stylesheets, level 2,
css2 specification.Available via the World Wide Web
at http ://www.w3.org/TR/1998/REC-CSS2-19980512.
[Bray et al., 2004] Bray, T., Paoli, J., and Sperberg-
McQueen, C. e. a. (2004). Extensible markup lan-
guage (xml) 1.0. Available via the World Wide Web
at http ://www.w3.org/TR/2004/REC-xml-20040204.
[Chancelier et al., 2001] Chancelier, J.-P., Dele-
becque, F., Gomez, C., Goursat, M.and Nikoukah, R.,



and Steer, S. (2001).Introduction à Scilab. Springer,
Paris.

[Collecutt et al., 2001] Collecutt, G., Drum-
mond, P., Hope, J., and Cochrane, P. (2001).
Extensible multi-dimensional simulator
(xmds). Available via the World Wide Web at
http ://www.physics.uq.edu.au/xmds/index.html.

[Gomez, 1999] Gomez, C. E. (1999).Engineering
and scientific computing with scilab. Birkauser, Bos-
ton.

[Hucka and Finney, 2003] Hucka, M. and Finney, A.
(2003). Systems biology markup language : Level 2
and beyond.Biochem. Soc. Trans., 31 :1472–1473.

[Hucka et al., 2003] Hucka, M., Finney, A., Sauro, H.,
Bolouri, H., Doyle, J., and al. (2003). The systems
biology markup language (sbml) : a medium for repre-
sentation and exchange of biochemical netwok models.
Bioinformatics, 19 :524–531.

[Motta Pires and Rogers, 2002] Motta Pires, P. and
Rogers, D. (2002). Free/opensource software : an al-
ternative of engineering students.Procceding of the
32nd ASEE/IEEE Frontiers in Education Conference,
November 6 - 9.

[Ousterhout, 1994] Ousterhout, J. (1994).Tcl and the
Tk toolkit. Addison-Wesley.

[Ousterhout, 1998] Ousterhout, J. (1998). Scripting :
Higher-level programming for the 21st century.IEEE
Computer magazine, March :23–30.

[Thompson et al., 2000] Thompson, H., Beech, D.,
Maloney, M., and Mendelsohn, N. (2000). Xml schema
part 1 : Structures.Available via the World Wide Web
at http ://www.w3.org/TR/xmlschema-1.


