Université de Rennes 1 Préparation à l'agrégation de mathématiques Auteur du document : M. Coste

Exponentielle de matrices:

cas des rotations et des déplacements, cas des carrés.

Michel Coste

17 juin 2003

1 Exponentielle, rotations, déplacements

Soit G un sous-groupe fermé de $\mathrm{GL}_n(\mathbb{R})$. Alors G est une sous-variété de $\mathrm{GL}_n(\mathbb{R})$, et son espace tangent en Id coïncide avec

$$\mathfrak{g} = \{ M \in \mathcal{M}_n(\mathbb{R}) \mid \forall t \in \mathbb{R}, \ \exp(tM) \in G \} .$$

Pour ceci, on peut voir [MnTe], p. 64 et suivantes. Le but de cette section est d'expliciter l'exponentielle $\mathfrak{g} \to G$ quand G est le groupe orthogonal ou le groupe des isométries d'un espace affine euclidien, en dimension 3.

1.1 Groupe orthogonal

L'espace tangent $\mathfrak{o}_n = T_{\mathrm{Id}} \mathcal{O}_n(\mathbb{R})$ au groupe orthogonal $\mathcal{O}_n(\mathbb{R})$ en l'identité est l'espace des matrices antisymétriques. En effet, une matrice $I_n + tM$ (t réel) est dans $\mathcal{O}_n(\mathbb{R})$ si et seulement si ${}^t(I_n + tM)(I_n + tM) = I_n$, et le coefficient de t quand on développe est $M + {}^tM$. Donc M est dans \mathfrak{o}_n si et seulement si $M + {}^tM = 0$.

1.1.1 Cas n = 2

Pour n=2, \mathfrak{o}_2 est donc l'espace des matrices de la forme $A_\theta=\begin{pmatrix}0&-\theta\\\theta&0\end{pmatrix}$ où θ est un réel. On a $\exp(A_\theta)=\begin{pmatrix}\cos\theta&-\sin\theta\\\sin\theta&\cos\theta\end{pmatrix}$, la matrice de rotation d'angle θ . On peut le voir simplement en utilisant la définition de $\exp(A_\theta)$ comme somme de la série $\sum_{k=0}^{\infty}\frac{1}{k!}A_{\theta}^k$, et en vérifiant que $A_{\theta}^{2k}=\begin{pmatrix}(-1)^k\theta^{2k}&0\\0&(-1)^k\theta^{2k}\end{pmatrix}$ et $A_{\theta}^{2k+1}=\begin{pmatrix}0&-(-1)^k\theta^{2k+1}\\(-1)^k\theta^{2k+1}&0\end{pmatrix}$. Ceci est sûrement un exemple d'exponentielle de matrice à connaître. Plus généralement l'exponentielle de la matrice $\begin{pmatrix}\rho&-\theta\\\theta&\rho\end{pmatrix}=\rho I_2+A_{\theta}$ est la matrice de similitude directe d'angle θ et de rapport e^{ρ} . On remarquera que ρI_2+A_{θ} est la représentation matricielle du nombre complexe $z=\rho+i\theta$, et que la similitude directe obtenue par exponentiation correspond bien à la multiplication par e^z .

1.1.2 Cas n = 3

Pour n=3, les matrices antisymétriques sont directement liées au produit vectoriel (pour la structure euclidienne orientée usuelle de \mathbb{R}^3). On a en effet :

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} \wedge \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 & -c & b \\ c & 0 & -a \\ -b & a & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} .$$

Si $\Omega=(a,b,c)$ nous noterons A_{Ω} la matrice 3×3 antisymétrique qui apparaît ci dessus; toute matrice 3×3 antisymétrique est bien sûr de cette forme. L'exponentielle $\exp(A_{\Omega})$ est la matrice de rotation d'axe la droite vectorielle engendrée par Ω , orienté par Ω , et d'angle $\|\Omega\|=\sqrt{a^2+b^2+c^2}$. Ceci est expliqué dans [MnTe], p. 87 et suivantes. Voici une autre présentation de ce fait. Choisissons une rotation U qui amène le vecteur Ω sur le vecteur $\|\Omega\|e_1=(\|\Omega\|,0,0)$. La rotation U préserve le produit vectoriel et on obtient

$$UA_{\Omega}U^{-1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -\|\Omega\| \\ 0 & \|\Omega\| & 0 \end{pmatrix} = A_{\|\Omega\|e_1} .$$

D'après ce qu'on a vu en dimension 2, on a

$$\exp(A_{\parallel\Omega\parallel e_1}) = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos(\parallel\Omega\parallel) & -\sin(\parallel\Omega\parallel)\\ 0 & \sin(\parallel\Omega\parallel) & \cos(\parallel\Omega\parallel) \end{pmatrix} ,$$

c'est-à-dire la matrice de rotation d'axe la droite vectorielle engendrée par e_1 orienté par e_1 et d'angle $\|\Omega\|$. On conclut grâce à l'identité $\exp(A_{\Omega}) = U^{-1} \exp(A_{\|\Omega\|e_1}) U$.

En conséquence, toute rotation, c'est-à-dire tout élément de $SO_3(\mathbb{R})$, est l'exponentielle d'une matrice antisymétrique. De manière générale tout élément de $SO_n(\mathbb{R})$ est l'exponentielle d'une matrice antisymétrique; pour voir ceci on utilise le fait qu'un élément de $SO_n(\mathbb{R})$ se met, par un changement de base orthogonal, sous une forme diagonale par blocs avec des blocs qui sont des 1 ou des matrices 2×2 de rotation.

1.2 Isométries

On s'intéresse maintenant au groupe $\operatorname{Isom}(\mathbb{R}^3)$ des isométries de l'espace affine euclidien \mathbb{R}^3 . Une isométrie s'écrit matriciellement sous la forme $X \mapsto UX + T$, où U est une matrice orthogonale (dans O_3), et T un vecteur colonne à trois composantes. Le groupe $\operatorname{Isom}(\mathbb{R}^3)$ se plonge comme sous-groupe de $\operatorname{GL}_4(\mathbb{R})$ en associant à l'isométrie décrite ci-dessus la matrice 4×4 :

$$\begin{pmatrix} U & T \\ \hline 0 & 1 \end{pmatrix}$$
.

L'espace tangent en l'identité au groupe des isométries s'identifie à l'espace des matrices $\begin{pmatrix} A_{\Omega} & T \\ \hline 0 & 0 \end{pmatrix}$. Une telle

matrice envoie le point X de l'espace affine \mathbb{R}^3 sur le vecteur $\tau(X) = \Omega \wedge \overrightarrow{OX} + T$. Le champ de vecteurs τ est un torseur (pour la notion de torseur, voir par exemple [LFAr]). Si le vecteur Ω du torseur τ est nul, l'exponentielle de ce torseur est la translation de vecteur T:

$$\exp\left(\begin{array}{c|c} 0 & T \\ \hline 0 & 0 \end{array}\right) = \left(\begin{array}{c|c} 0 & T \\ \hline 0 & 1 \end{array}\right) .$$

Si le vecteur Ω du torseur τ est non nul, on peut trouver un point O' tel que $\tau(X) = \Omega \wedge \overrightarrow{O'X} + T'$ avec T' colinéaire à Ω : en fait T' est la projection orthogonale de T sur la droite vectorielle engendrée par Ω , et on a à résoudre $\Omega \wedge \overrightarrow{OO'} = T' - T$. Les points O' vérifiant cette propriété forment une droite affine Δ dirigée par Ω . Cette droite Δ est l'axe du torseur. On calcule facilement, en utilisant $A_{\Omega}T' = 0$, que

$$\exp\left(\begin{array}{c|c} A_{\Omega} & T' \\ \hline 0 & 0 \end{array}\right) = \left(\begin{array}{c|c} \exp(A_{\Omega}) & T' \\ \hline 0 & 1 \end{array}\right) \ .$$

En utilisant la conjugaison par la matrice de la translation de vecteur $\overrightarrow{OO'}$, on conclut que l'exponentielle du torseur τ est la rotation d'axe Δ orienté par Ω d'angle $\|\Omega\|$, composée avec la translation de vecteur T' parallèle à Δ

La description géométrique des déplacements de l'espace affine euclidien de dimension 3 montre que tout déplacement est l'exponentielle d'un torseur. Le groupe à un paramètre $t\mapsto \exp(t\tau)$ défini par un torseur τ est un mouvement hélicoïdal uniforme.

2 Exponentielle et carrés

Dans la liste des « questions agrégation » d'O. Debarre et Y. Laszlo¹, on trouve :

(4.34) Soit A une matrice réelle inversible. Montrer qu'il existe une matrice réelle M telle que $A = e^M$ si et seulement s'il existe une matrice réelle B telle que $A = B^2$.

Dans cette section on explique une démonstration de cette équivalence. L'exercice 6 p. 94 de [MnTe] demande aussi de démontrer cette équivalence; les indications qui y sont données ne conduisent pas à la démonstration exposée ici.

Merci aux collègues (notamment L. Moret-Bailly) avec qui j'ai discuté cet exercice.

¹disponible à l'adresse http://www-irma.u-strasbg.fr/~debarre

2.1 Premières constatations et exemples

On remarque immédiatement qu'une des implications est immédiate : si $A=e^M$ avec M réelle, alors la matrice $B=\exp(\frac{1}{2}M)$ vérifie $B^2=A$. Par ailleurs, cette caractérisation de l'image de l'application exponentielle sur les matrices réelles est à rapprocher du résultat qui dit que toute matrice complexe inversible est une exponentielle (nous reviendrons là-dessus plus loin). Pour la dimension 1, il est clair que les nombres réels qui sont de la forme e^t avec t réel sont exactements les carrés non nuls! En dimension 2, c'est déjà un peu plus difficile. Par exemple, la matrice $A_1=\begin{pmatrix} -1 & 0 \\ 0 & -4 \end{pmatrix}$ n'est pas un carré (donc, pas non plus une exponentielle) de matrice réelle. La matrice $A_2=\begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}$ non plus (si on avait $A_2=B^2$ avec B réelle, alors B devrait avoir i et -i pour valeurs propres et serait diagonalisable sur $\mathbb C$; donc A_2 serait diagonalisable sur $\mathbb R$). Par contre, $A_3=\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ est une exponentielle (et donc aussi un carré) de matrice réelle : $A_3=\exp\begin{pmatrix} 0 & -\pi \\ \pi & 0 \end{pmatrix}=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}^2$ (réaliser que A_3 est la matrice de rotation d'angle π). On peut voir aussi les exercices 4 et 5 p. 94 de [MnTe] l'exercice 10 p. 156 de [Se].

2.2 La démonstration

On en vient maintenant à la preuve de l'implication difficile : si B est une matrice réelle inversible alors il existe un matrice réelle M telle que $B^2 = \exp(M)$. On utilise le lemme suivant, qui raffine la surjectivité de l'exponentielle $\mathcal{M}_n(\mathbb{C}) \to \mathrm{GL}_n(\mathbb{C})$:

Pour toute matrice C de $\mathrm{GL}_n(\mathbb{C})$, il existe un polynôme $P \in \mathbb{C}[X]$ tel que $C = \exp(P(C))$.

Ce lemme figure dans la liste de questions mentionnée ci-dessus (4.32). On applique ce lemme à notre matrice réelle B. On trouve un polynôme complexe P tel que $B = \exp(P(B))$. Puisque B est réelle, on a aussi $B = \exp(\overline{P}(B))$. Puisque P(B) et $\overline{P}(B)$ commutent, on a $A^2 = \exp(P(B) + \overline{P}(B))$, ce qui montre que A^2 est l'exponentielle d'une matrice réelle.

Il reste à démontrer le lemme.

2.3 Première démonstration du lemme

On peut utiliser la décomposition de Dunford C = D + N où D est diagonalisable, N nilpotente, et D et N commutent. Un fait utile ici est que D et N sont des polynômes en C; ceci est expliqué par exemple page 193 dans [Go], où dans le texte [Fe] qui décrit un algorithme pour la décomposition de Dunford sans calcul des valeurs propres.

Écrivons maintenant $C = D(I_n + D^{-1}N)$. Si on peut trouver deux polynômes Q et R tels que $D = \exp(Q(C))$ et $I_n + D^{-1}N = \exp(R(C))$, on aura gagné : il suffira de prendre P = Q + R pour avoir $C = \exp(P(C))$. Voyons d'abord comment obtenir R. Puisque $D^{-1}N$ est nilpotente, on peut prendre le logarithme de la matrice unipotente $I_n + D^{-1}N$ (voir par exemple [MnTe] p. 60) :

$$I_n + D^{-1}N = \exp\left(\sum_{k=1}^n \frac{(-1)^{k-1}}{k} (D^{-1}N)^k\right).$$

La somme qui figure à droite est un polynôme en $D^{-1}N$, et donc un polynôme en C; ceci nous donne R. Passons maintenant à Q. Soient λ_i les valeurs propres (non nulles) de D, μ_i des complexes tels que $\exp(\mu_i) = \lambda_i$ (on utilise ici la surjectivité de $\exp: \mathbb{C} \to \mathbb{C}^*$) et soit Q_1 un polynôme tel que $Q_1(\lambda_i) = \mu_i$ pour tout i; on peut trouver un tel polynôme par interpolation de Lagrange. Alors, comme D est diagonalisable, on a $D = \exp(Q_1(D))$, et par conséquent D est l'exponentielle d'un polynôme en C.

2.4 Deuxième démonstration du lemme

On considère la sous-algèbre $\mathbb{C}[C]$ de $\mathcal{M}_n(\mathbb{C})$ engendrée par C. C'est une algèbre commutative de dimension finie sur \mathbb{C} , isomorphe à $\mathbb{C}[X]/(\Pi)$, où Π est le polynôme minimal de C.

1. Pour toute matrice M de $\mathbb{C}[C]$, l'exponentielle $\exp(M)$ est un élément inversible de $\mathbb{C}[C]$ (puisque $\exp(M)$ est, par définition, limite de polynômes en M qui appartiennent à $\mathbb{C}[C]$, et que $\mathbb{C}[C]$ qui est de dimension finie est fermé dans $\mathcal{M}_n(\mathbb{C})$).

- 2. Puisque tous les éléments de $\mathbb{C}[C]$ commutent, l'application exp induit un homorphisme du groupe additif de $\mathbb{C}[C]$ dans le groupe multiplicatif U des inversibles de $\mathbb{C}[C]$.
- 3. Le groupe U est ouvert dans $\mathbb{C}[C]$ puisque c'est le complémentaire de l'ensemble des zéros de la fonction continue det : $\mathbb{C}[C] \to \mathbb{C}$.
- 4. La différentielle de $\exp: \mathbb{C}[C] \to U$ en $0 \in \mathbb{C}[C]$ est l'identité de $\mathbb{C}[C]$. Par le théorème d'inversion locale, $\exp(\mathbb{C}[C])$ contient un voisinage ouvert de I_n dans U. Par conséquent $\exp(\mathbb{C}[C])$ est un sous-groupe ouvert, et donc fermé, de U ([MnTe] 2.4.1 p. 30).
- 5. U est connexe : si M et N sont dans U alors la droite complexe des zM + (1-z)N pour $z \in \mathbb{C}$ ne rencontre $\mathbb{C}[C] \setminus U$ qu'en un nombre fini de points (correspondant aux racines de $\det(zM + (1-z)N)$), et on peut donc trouver un chemin continu de M à N dans cette droite complexe qui évite ces points.

Puisque $\exp(\mathbb{C}[C])$ est un ouvert-fermé non vide de U qui est connexe, on a $\exp(\mathbb{C}[C]) = U$. Le lemme est démontré. Remarquez qu'on n'utilise pas ici la surjectivité de $\exp: \mathbb{C} \to \mathbb{C}^*$, mais que par contre le cas n = 1 (avec $\mathbb{C}[C] = \mathbb{C}$) démontre cette surjectivité.

Références

- [Fe] D. Ferrand: Une méthode effective pour la décomposition de Dunford. http://agreg-maths.univ-rennes1.fr/documentation/docs/Jordan.alg.pdf
- [Go] X. Gourdon : Les maths en tête, Algèbre. Ellipses.
- [LFAr] J. Lelong-Ferrand, J-M. Arnaudiès : Cours de mathématiques, tome 3 : Géométrie et cinématique. Dunod.
- [MnTe] R. Mneimné, F. Testard : Groupes de Lie classiques. Hermann.
- [Se] D. Serre: Les matrices. Dunod.