LE THÉORÈME DE MASCHKE

par

Stef Graillat

La preuve que nous donnons ici est tiré de [LS94, p.74]. On en trouve aussi une dans [FGN00]. Ce théorème trouve sa place dans la leçon :

– 124 : Sous-espaces stables d'un endomorphisme d'un espace vectoriel de dimension finie. Applications.

THÉORÈME. — Soit **K** un corps de caractéristique nulle, E un **K**-espace vectoriel de dimension fini et G un sous-groupe fini de GL(E). Soit F un sous-espace de E stable par tous les éléments de G. Alors il existe un supplémentaire S de F dans E qui soit stable par tous les éléments de G.

 $D\acute{e}monstration$. — Soit H un supplémentaire quelconque de F dans E et p le projecteur sur F parallèlement à H. Notons

$$P_0 = \frac{1}{m} \sum_{g \in G} g \circ p \circ g^{-1}$$

ou $m = \operatorname{card}(G)$. On a par hypothèse que $g(F) \subset F$, ceci pour tout g appartenant G et de plus, le projecteur p envoie E sur F, donc P_0 envoie E sur F. En outre, si $x \in F$ alors $g \circ p \circ g^{-1}(x) = g \circ g^{-1}(x) = x \operatorname{car} p \circ g^{-1}(x) = g^{-1}(x)$ puisque $g^{-1}(x) \in F$. Par conséquent, pour $x \in F$, on a $P_0(x) = x$ ce qui implique que $\operatorname{Im} P_0 = F$; en plus $P_0 \circ P_0(x) = P_0(x)$ car $P_0(x) \in F$. En conclusion, P_0 est une projection sur F parallèlement à un supplémentaire F0 de F1 dans F2. On remarque aussi que, pour tout F3 on a F4 on a F5 en effet,

$$g \circ P_0 \circ g^{-1}(x) = \frac{1}{m} \sum_{g \in G} ghph^{-1}g^{-1} = \frac{1}{m} \sum_{g \in G} (gh)p(gh)^{-1} = P_0,$$

car l'application $h \mapsto gh$ est une permutation de G. Soit maintenant $x \in S$ et $g \in G$, on a $P_0(x) = 0$ et donc $P_0(g(x)) = g(P_0(x)) = 0$ et en conséquence $g(x) \in S$. Il en résulte que, pour tout $g \in G$, $g(S) \subset S$ d'où le résultat.

Le fait que **K** soit de caractéristique nulle est important. Le résultat est faux sinon. Donnons pour cela un contre-exemple. Soit **K** un corps de caractéristique p et prenons $E = \mathbf{K}^p$. Soit n un endomorphisme nilpotent « de Jordan », c'est-à-dire vérifiant $n(e_i) = e_{i-1}$ si i > 1 et $n(e_1) = 0$ où (e_1, \ldots, e_p) est la base canonique de E. Il est d'indice de nilpotence p. L'endomorphisme $s = \operatorname{Id} + n$ est lui d'ordre p, i.e. $s^p = \operatorname{Id}$ et $s^i \neq \operatorname{Id}$ pour i < p.

2 STEF GRAILLAT

Références

[FGN00] S. Francinou, H. Gianella & S. Nicolas – *Oraux X-ENS algèbre 1*, Cassini, 2000. [LS94] E. Lechtnam & X. Schauer – *Exercices corrigés de Mathématiques posés à l'oral de l'X et des ENS, tome 2*, Ellipses, 1994.

9 décembre 2004

STEF GRAILLAT, Université de Perpignan, 52, avenue Paul Alduy, F-66860 Perpignan Cedex *E-mail*:graillat@univ-perp.fr • *Url*:http://gala.univ-perp.fr/~graillat