2 Sous-groupes compacts de $\mathrm{GL}_n(\mathbb{R})$

THÉORÈME. Tout sous-groupe compact de $GL_n(\mathbb{R})$ est conjugué à un sous-groupe de $O_n(\mathbb{R})$.

En particulier, $O_n(\mathbb{R})$ est un sous-groupe compact maximal de $GL_n(\mathbb{R})$.

Lemme. Soient E un espace vectoriel réel de dimension finie, K un convexe compact de E et H un sous-groupe compact de GL(E). Si K est stable par tous les éléments de H, alors il existe un point $a \in K$ fixé par tous les éléments de H.

Preuve.

Soit $\|.\|$ une norme euclidienne sur E et pour $x \in E$, posons $N(x) = \sup_{u \in H} \|u(x)\| = \max_{u \in H} \|u(x)\|$ (la borne supérieure est atteinte car H est compact pour la norme induite par $\|.\|$).

N est une norme sur E. En effet,

- Si N(x) = 0, on a en particulier $\|\mathrm{id}_E(x)\| = 0$ d'où x = 0.
- Il est clair que $N(\lambda x) = \lambda N(x)$ pour $\lambda \in \mathbb{R}$.
- $-N(x+y) = \max_{u \in H} \|u(x+y)\| \leq \max_{u \in H} (\|u(x)\| + \|u(y)\|) \leq \max_{u \in H} \|u(x)\| + \max_{u \in H} \|u(y)\|$ soit $N(x+y) \leq N(x) + N(y)$.

De plus, N vérifie la propriété suivante : pour tout $v \in H$, N(v(x)) = N(x) (c'est clair car $u \mapsto u \circ v$ est une permutation de H). Enfin, N est une norme strictement convexe. Montrons-le :

Soient $x, y \in E$ tels que N(x+y) = N(x) + N(y). Soit $u_0 \in H$ tel que $N(x+y) = ||u_0(x+y)||$. Des inégalités

$$N(x+y) = ||u_0(x) + u_0(y)|| \le ||u_0(x)|| + ||u_0(y)|| \le N(x) + N(y) = N(x+y),$$

on déduit que $||u_0(x) + u_0(y)|| = ||u_0(x)|| + ||u_0(y)||$, si bien que $u_0(x)$ et $u_0(y)$ sont positivement liés (une norme euclidienne étant strictement convexe). u_0 étant linéaire et inversible, cela entraı̂ne de même que x et y sont positivement liés.

Il s'ensuit qu'il existe un unique point a de norme N minimale sur le convexe compact K (la compacité de K donne l'existence, la convexité de K et la stricte convexité de la norme l'unicité : si deux points a_1 , a_2 distincts dans K sont de norme minimale, le milieu du segment $[a_1, a_2]$ est encore dans K et de norme strictement inférieure).

Si $v \in H$, $v(a) \in K$ et N(v(a)) = N(a) donc v(a) = a: le point a est fixé par tous les éléments de H.

Preuve du théorème.

Soit G un sous-groupe compact de $GL_n(\mathbb{R})$. Notons E l'espace des matrices symétriques

carrées d'ordre n. L'application $\rho: \begin{pmatrix} G \to \operatorname{GL}(E) \\ A \mapsto \rho_A \end{pmatrix}$ définie par $\rho_A(S) = {}^tASA$ est un

morphisme de groupes topologiques. Le groupe $H=\rho(G)$ est donc un sous-groupe compact de $\mathrm{GL}(E)$.

L'ensemble $\mathcal{E} = \{{}^tMM, M \in G\}$ est un compact de E, son enveloppe convexe K est donc compacte d'après le théorème de Carathéodory. \mathcal{E} étant inclus dans l'ensemble convexe $S_n^{++}(\mathbb{R})$ des matrices symétriques définies positives, on a encore $K \subset S_n^{++}(\mathbb{R})$.

Il est clair que les éléments de H laissent K stable : $\rho_A({}^tMM) = {}^t(MA)(MA)$ est élément de \mathcal{E} si $M \in G$, le résultat s'ensuit par linéarité. Nous pouvons donc appliquer le lemme : il existe une matrice symétrique définie positive S qui est fixée par tous les éléments de H, autrement dit telle que ${}^tASA = S$ pour toute matrice A de G. Il est équivalent de dire que G est contenu dans le groupe orthogonal de la forme quadratique associée à S, ou encore que G est conjugué à un sous-groupe de $O_n(\mathbb{R})$ (d'après le théorème de réduction des formes quadratiques).

Leçons possibles

101 Groupe opérant sur un ensemble. Exemples et applications.

106 Groupe linéaire d'un espace vectoriel de dimension finie E, sous-groupes de GL(E). Applications.

121 Matrices équivalentes. Matrices semblables. Applications.

(137 Barycentres dans un espace affine réel de dimension finie; convexité. Applications.)

148 Groupe orthogonal d'une forme quadratique.

133 Endomorphismes remarquables d'un espace vectoriel euclidien de dimension finie.

Références

[Ale99] pp. 59-60.