28 Théorèmes de Perron-Frobenius

THÉORÈME (PERRON-FROBENIUS, première forme faible). Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice strictement positive (à coefficients > 0). Alors

- i) $\rho(A)$ est valeur propre et $\rho(A) > 0$.
- ii) $\rho(A)$ est associé à un vecteur propre > 0.
- iii) $\rho(A)$ est valeur propre simple, de plus c'est l'unique valeur propre de module maximal.

Preuve.

Soit $x \in \mathbb{C}^n$ tel que $Ax = \lambda x$ avec $|\lambda| = \rho(A)$. L'inégalité triangulaire donne $\rho(A)|x| = |Ax| \leqslant A|x|$. Supposons qu'on n'ait pas l'égalité, on a alors que $A|x| - \rho(A)|x| \geqslant 0$ est non nul. On en déduit que $A(A|x| - \rho(A)|x|) > 0$ (car A > 0), soit encore $\rho(A)v < Av$ avec v = A|x| > 0. Il existe alors un réel $\rho > \rho(A)$ tel que $\rho v \leqslant Av$. Par une récurrence immédiate, on a $\rho^k v \leqslant A^k v$ pour tout entier $k \geqslant 1$. Il s'ensuit que $\rho^k ||v||_{\infty} \leqslant ||A^k||_{\infty} ||v||_{\infty}$ puis $\rho \leqslant ||A^k||_{\infty}^{1/k}$. En passant à la limite quand $k \to \infty$ on obtient $\rho \leqslant \rho(A)$, ce qui est une contradiction.

On a montré que $A|x| = \rho(A)|x|$: $\rho(A)$ est valeur propre de A associé à |x|. Comme $|x| \ge 0$ est non nul et A > 0, on a A|x| > 0. Or $A|x| = \rho(A)|x|$ et |x| a au moins une coordonnée non nulle, on en déduit que $\rho(A) > 0$ et le point i) du théorème est montré. Ensuite, toujours en vertu du fait que $A|x| = \rho(A)|x|$ avec A|x| > 0, et puisque $\rho(A) > 0$, on a nécessairement |x| > 0 et le point ii) est montré.

Ensuite, on remarque que l'on est dans le cas d'égalité de l'inégalité triangulaire $|Ax| \leq A|x|$, i.e. $\left|\sum_{j=1}^{n} a_{ij} x_{j}\right| = \sum_{i=1}^{n} a_{ij}|x_{j}|$ (sur chaque composante i). On en déduit que les x_{j} sont positivement liés (rappelons que $a_{ij} > 0$), autrement dit ils ont le même argument. On peut donc écrire $x = e^{i\theta}|x|$.

On en déduit d'une part que $\rho(A)$ est l'unique valeur propre de module maximal. En effet, en écrivant $Ax = \lambda x$ avec $|\lambda| = \rho(A)$, nous avons montré que $A|x| = \rho(A)|x|$ et $x = e^{i\theta}|x|$. On a donc $Ax = e^{i\theta}A|x| = e^{i\theta}\rho(A)|x|$ et par ailleurs $Ax = \lambda x = e^{i\theta}\lambda|x|$. En identifiant, il vient $\lambda = \rho(A)$, ce qu'on voulait.

D'autre part, on en déduit que $\rho(A)$ est valeur propre simple. Soit x et y deux vecteurs propres associés à $\rho(A)$, on veut montrer qu'ils sont colinéaires (sur \mathbb{C}). D'après ce qu'il précède (|x|, |y| sont des vecteurs propres > 0 associés à $\rho(A)$, colinéaires à x et y respectivement), on peut supposer que x > 0 et y > 0. Soit $\beta = \min_{1 \le i \le n} \frac{y_i}{x_i}$. Par définition, on a $\beta x \le y$ mais en fait forcément $\beta x = y$, car sinon en appliquant A il vient $\beta x < y$, ce qui contredit la définition de β . x et y sont donc colinéaires, et le point iii) est montré.

THÉORÈME (PERRON-FROBENIUS, seconde forme faible). Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice positive (à coefficients positifs). Alors $\rho(A)$ est une valeur propre de A, associée à un vecteur propre positif.

Première preuve.

Cette preuve repose sur la première forme faible.

Soit $A_k = A + \frac{1}{k}J$ (pour $k \in \mathbb{N}^*$), où J est la matrice dont tous les coefficients valent 1.

D'après la première forme faible du théorème de PERRON-FROBENIUS, il existe un vecteur propre positif x_k , que l'on peut supposé normé, associé à la valeur propre $\rho(A_k)$. Quitte à extraire, on peut supposer que x_k a une limite x (qui est positif et normé) quand $k \to \infty$.

Nous aurons besoin du lemme suivant : si $0 \le A \le B$, alors $\rho(A) \le \rho(B)$. En effet, on a dans ce cas $||A^k||_{\infty} \le ||B^k||_{\infty}$ pour tout entier k, et on a le résultat en passant à la limite quand $k \to \infty$.

Ici, on en déduit d'une part que $\rho(A) \leq \rho(A_k)$ pour tout k et d'autre part que $(\rho(A_k))_{k \in \mathbb{N}^*}$ est une suite décroissante. Elle converge donc vers $\rho \geq \rho(A)$.

En passant à la limite dans l'expression $A_k x_k = \rho(A_k) x_k$ quand $k \to +\infty$, il vient $Ax = \rho x$. Cela prouve que ρ est valeur propre de A associé au vecteur propre positif x, de plus on a $\rho \geqslant \rho(A)$ donc nécessairement $\rho = \rho(A)$, et le théorème est montré.

Deuxième preuve.

Cette preuve ne repose pas sur la première forme faible du théorème de PERRON-FROBENIUS, mais elle utilise un corollaire du théorème du point fixe de BROUWER : toute application continue d'un convexe compact d'un espace de dimension finie dans lui-même admet un point fixe.

Soit $C = \{x \in \mathbb{R}^n, x \ge 0, ||x||_{\infty} = 1 \text{ et } Ax \ge \rho(A)x\}$. On vérifie sans mal que C est convexe et compact. De plus C est non vide : soit $x \in \mathbb{R}^n$ normé tel que $Ax = \lambda x$ avec $\lambda = \rho(A)$, alors $\rho(A)|x| = |\lambda x| = |Ax| \le A|x|$ donc $|x| \in C$.

S'il existe $x \in C$ tel que Ax = 0, on a nécessairement $\rho(A) = 0$ est le théorème est montré dans ce cas. Sinon, on définit la fonction f sur C par $f(x) = \frac{Ax}{\|Ax\|_{\infty}}$. On vérifie immédiatement que C est stable par f, il s'ensuit que f admet un point fixe $x \in C$. On a alors $Ax = \|Ax\|_{\infty}x$ si bien que x est un vecteur propre positif de A associé à la valeur propre $\|Ax\|_{\infty}$, de plus on doit avoir $\|Ax\|_{\infty} \geqslant \rho(A)$ d'où nécessairement $\|Ax\|_{\infty} = \rho(A)$.

Définition. On dit qu'une matrice $A \in \mathcal{M}_n(k)$ (où k est un corps) est réductible s'il existe une partition non triviale $\{1,...,n\} = I \cup J$ telle que $(i,j) \in I \times J$ entraîne $a_{ij} = 0$.

Il est équivalent de dire qu'il existe une matrice de permutation P telle que $P^{-1}AP$ ait une forme triangulaire par blocs $\begin{bmatrix} * & * \\ 0 & * \end{bmatrix}$. On dit qu'une matrice est irréductible si elle n'est pas réductible.

Lemme. $A \in \mathcal{M}_n(\mathbb{R})$ est irréductible si et seulement si $(I_n + |A|)^{n-1} > 0$.

Preuve.

Si A est réductible, il existe une matrice de permutation P telle que $P^{-1}AP$ soit de la forme

$$\left[\begin{array}{c|c} * & * \\ \hline 0 & * \end{array}\right]$$
. On en déduit que $P^{-1}(I_n + |A|)^{n-1}P$ est également de la forme $\left[\begin{array}{c|c} * & * \\ \hline 0 & * \end{array}\right]$. Cette

matrice contient des 0 donc $(I_n + |A|)^{n-1}$ aussi, P étant une matrice de permutation.

Pour la réciproque, on introduit la notion de chemin dans A: pour $1 \le i, j \le n$, on convient d'appeler chemin de i vers j dans A de longueur $m \in \mathbb{N}^*$ la donnée de m-1 indices $k_1, ..., k_{m-1}$ tels que $a_{ik_1}, a_{k_1k_2}, ..., a_{k_{m-1}j}$ soient tous non nuls. Par convention, il existe un unique chemin $i \to i$ de longueur 0.

Montrons par récurrence sur m qu'une condition nécessaire et suffisante pour qu'il existe un chemin de longueur m de $i \to j$ dans A est que $(|A|^m)_{ij} > 0$.

Les cas m=0, m=1 sont triviaux. Supposons le résultat vrai un certain $m \geqslant 1$. On a $(|A|^{m+1})_{ij} = \sum_{k=1}^{n} (|A|^m)_{ik} |a_{kj}|$. On en déduit que $(|A|^{m+1})_{ij} > 0$ si et seulement si il existe $k \in \{1, ..., n\}$ tel que $(|A|^m)_{ik} > 0$ et $|a_{kj}| > 0$. Par hypothèse de récurrence, cela revient à dire qu'il existe un chemin $i \to k$ de longueur m dans A et un chemin $k \to j$ de longueur 1. Il est clair que cela équivaut à l'existence d'un chemin $i \to j$ de longueur m+1 dans A.

On suppose que $((I+|A|)^{n-1})_{ij}=0$. En écrivant que $((I+|A|)^{n-1})_{ij}=\sum_{k=0}^{n-1} C_{n-1}^k (|A|^k)_{ij}$, on voit que cela équivant à $(|A|^k)_{ij}=0$ pour tout $0 \leq k \leq n-1$. Autrement dit, il n'existe pas de chemin $i \to j$ de longueur $\leqslant n-1$ dans A (en part. $i \neq j$). Comme on peut « extraire » de tout chemin $i \to j$ un chemin de longueur $\leq n-1$ (i et j étant distincts), on en déduit qu'il n'existe pas de chemin $i \to j$ dans A.

Soit $I = \{1 \le k \le n, \exists i \to k \text{ dans A}\}\ \text{et } J = I^c.\ \text{Alors } I \neq \emptyset \ (i \in I) \text{ et } J \neq \emptyset \ (j \in J).\ \text{De}$ plus, si $(p,q) \in I \times J$, alors il n'existe pas de chemin $p \to q$ (sinon on construirait le chemin $i \to p \to q$). En particulier, $a_{pq} = 0$, ce qui prouve que A est réductible.

THÉORÈME (PERRON-FROBENIUS, forme forte). Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice positive irréductible. Alors $\rho(A)$ est une valeur propre simple de A, associée à un vecteur propre strictement positif. De plus, $\rho(A) > 0$.

Preuve.

D'après la deuxième forme faible du théorème de Perron-Frobenius, $\rho(A)$ est valeur propre de A, associée à un vecteur propre positif x. On écrit que $(I+A)^{n-1}x=(1+\rho(A))^{n-1}x$. Or $(I+A)^{n-1}>0$ (A étant irréductible) et $x\geqslant 0$ donc $(I+A)^{n-1}x>0$. De plus il est clair que $(1+\rho(A))^{n-1}>0$, on en déduit que x>0. Enfin, étant donné que $Ax=\rho(A)x$ avec Axpositif non nul et x > 0, on doit avoir $\rho(A) > 0$.

Il reste à montrer que $\rho(A)$ est valeur propre simple. Il nous suffit de montrer que c'est une racine simple du polynôme caractéristique χ_A , autrement dit que $\chi'_A(\rho(A)) \neq 0$. En notant $V_1(X)$, ..., $V_n(X)$ les colonnes de la matrice $XI_n - A$, on a par multilinéarité du déterminant $\chi'_A(X) = \sum_{j=1}^n \det(V_1, ..., V_{j-1}, V'_j, V_{j+1}, ..., V_n)$. Étant donné que $V'_j = e_j$, le j-ème vecteur de la base canonique de \mathbb{R}^n , on peut écrire $\chi'_A(X) = \sum_{j=1}^n \det(V_1, ..., V_{j-1}, e_j, V_{j+1}, ..., V_n) = \sum_{j=1}^n \chi_{A_j}$, où A_j est la matrice obtenue en rayant les j-èmes lignes et colonnes dans A.

Soit B_j la matrice obtenue en annulant les j-èmes lignes et colonnes de A. Après une permutation, B_j est diagonale par blocs avec un bloc nul de taille 1 et le bloc A_j . On en déduit que $\rho(A_j) = \rho(B_j)$ et $0 \leqslant B_j \leqslant A$, mais $B \neq A$ puisque B est réductible. Il s'ensuit que $\rho(B_j) < \rho(A)$ (cf ci-dessous). Finalement, $\rho(A_j) < \rho(A)$ (pour tout j) donc $\chi_{A_j}(\rho(A)) > 0$ ($\rho(A)$ est strictement plus grand que la plus grande des racines réelles de χ_{A_j} , donc $\chi_{A_j}(\rho(A))$ est non nul et du signe de χ_{A_j} au voisinage de χ_{A_j} c'est-à-dire λ_{A_j} 0 on a donc $\lambda_{A_j}'(X) > 0$.

Pour terminer la démonstration, il nous reste à montrer que si $0 \le B \le A$, avec A irréductible et $\rho(B) = \rho(A)$, alors A = B. Soit x un vecteur propre positif de B associé à $\rho(A)$ (seconde forme faible du théorème). On a $Ax \ge Bx = \rho(A)x$. Supposons que l'on ait pas $Ax = \rho(A)x$, alors en notant $v = (I + A)^{n-1}x$ il vient $Av - \rho(A)v = (I + A)^{n-1}(Ax - \rho(A)x) > 0$. Il existe donc $\rho > \rho(A)$ tel que $Av \ge \rho v$. On en déduit que pour tout entier k, $A^k v \ge \rho^k v$ puis $\|A^k\|_{\infty} \ge \rho^k$. En prenant la racine k-ème et en passant à la limite, on trouve $\rho(A) \ge \rho$: contradiction.

Remarque : Il n'est pas vrai que $\rho(A)$ est la seule valeur propre de plus grand module en général, en revanche on peut montrer que l'ensemble des valeurs propres de module maximal est de la forme $\rho(A)\mathbb{U}_p$, où \mathbb{U}_p est le groupe des racines p-èmes de l'unité, et que le spectre de A est invariant par \mathbb{U}_p .

Leçons possibles

(123 Déterminant. Exemples et applications.)

(124 Réduction d'un endomorphisme en dimension finie. Applications.)

 $((125 \text{ Sous-espaces stables d'un endomorphisme d'un espace vectoriel de dimension finie. Applications.))$

(129 Polynômes d'endomorphismes. Polynômes annulateurs. Applications.)

206 Utilisation de théorèmes de point fixe.

Références

[Via]

[Ser01]

76