DÉVELOPPEMENT 8

ENVELOPPE CONVEXE DU GROUPE ORTHOGONAL

On considère l'espace $\mathcal{M}_n(\mathbb{R})$ muni de la norme $\|\| \|_2$ induite par la norme euclidienne de \mathbb{R}^n .

Lemme. — Les formes linéaires sur $\mathcal{M}_n(\mathbb{K})$ sont les applications

$$\mathcal{M}_n(\mathbb{K}) \to \mathbb{K}, M \mapsto \operatorname{Tr}(AM) \quad où \quad A \in \mathcal{M}_n(\mathbb{K}).$$

Démonstration. — On considère le morphisme $f: \mathcal{M}_n(\mathbb{K}) \to \mathcal{M}_n(\mathbb{K})', A \mapsto f_A$ où $f_A(M) = \text{Tr }(AM)$. Il s'agit de montrer que f est un isomorphisme i.e. (puisque $\dim \mathcal{M}_n(\mathbb{K}) = \dim \mathcal{M}_n(\mathbb{K})'$) de montrer que f est injective. Si $A = (a_{i,j})$ est telle que $f_A = 0$ alors, pour tous $1 \leq i, j \leq n$, on a

$$0 = f_A(E_{i,j}) = \operatorname{Tr} (AE_{i,j})$$

mais

$$AE_{i,j} = \sum_{1 \le k,l \le n} a_{k,l} E_{k,l} E_{i,j} = \sum_{1 \le k,l \le n} a_{k,l} \delta_{li} E_{k,l} E_{i,j} = \sum_{k=1}^{n} a_{k,i} E_{k,i} E_{i,j} = \sum_{k=1}^{n} a_{k,i} E_{k,j}$$

d'où

$$0 = \text{Tr } (AE_{i,j}) = \text{Tr } \sum_{k=1}^{n} a_{k,i} E_{k,j} = \sum_{k=1}^{n} a_{k,i} \text{Tr } (E_{k,j}) = \sum_{k=1}^{n} a_{k,i} \delta_{kj} = a_{j,i}$$

i.e. A = 0.

Théorème. — L'enveloppe convexe de $\mathcal{O}(n)$ dans $\mathcal{M}_n(\mathbb{R})$ est la boule unité.

Démonstration. — Il est clair que $\mathbb{B}_{\mathcal{M}_n(\mathbb{K})}$ contient l'enveloppe convexe de $\mathcal{O}(n)$, on considère donc une matrice $M \in \mathcal{M}_n(\mathbb{K})$ telle que $||M||_2 \leq 1$. D'après un corollaire du théorème de Hahn-Banach, pour montrer que M est dans l'enveloppe convexe de $\mathcal{O}(n)$, il suffit de montrer que

$$\varphi(M) \le \sup_{O \in \mathcal{O}(n)} \varphi(O)$$

pour toute forme linéaire φ sur $\mathcal{M}_n(\mathbb{K})$. D'après le lemme, cela revient à montrer que

$$\operatorname{Tr}(AM) \leq \sup_{O \in \mathcal{O}(n)} \operatorname{Tr}(AO), \ \forall A \in \mathcal{M}_n(\mathbb{K}).$$

On considère une décomposition polaire $A = \Omega S$ de A (i.e. Ω est orthogonale et S est symétrique positive) et une base orthonormale (e_1, \ldots, e_n) de \mathbb{R}^n formée de vecteurs propres de S, alors

$$\sup_{O\in\mathcal{O}(n)}\operatorname{Tr}\ (AO)\geq\operatorname{Tr}\ (A\Omega^{-1})=\operatorname{Tr}\ (\Omega^{-1}A)=\operatorname{Tr}\ (S)=\sum_{i=1}^n\|Se_i\|_2\,.$$

D'autre part, on a

$$\operatorname{Tr}(AM) = \operatorname{Tr}(MA) = \sum_{i=1}^{n} \langle MAe_i, e_i \rangle = \sum_{i=1}^{n} \langle Ae_i, M^*e_i \rangle$$

d'où d'après l'inégalité de Cauchy-Schwarz

$$\operatorname{Tr} (AM) \leq \sum_{i=1}^{n} \|Ae_i\|_2 \|M^*e_i\|_2 \leq \sum_{i=1}^{n} \|Ae_i\|_2 \|M^*\|_2 \|e_i\|_2.$$

Mais $||M||_2 \le 1$ implique que $||M^*||_2 \le 1$ et la base (e_1, \ldots, e_n) est orthonormale donc

Tr
$$(AM) \le \sum_{i=1}^{n} ||Ae_i||_2 \le \sum_{i=1}^{n} ||\Omega Se_i||_2 = \sum_{i=1}^{n} ||Se_i||_2$$

et on a finalement bien Tr $(AM) \leq \sup_{O \in \mathcal{O}(n)} \text{Tr } (AO)$.

On rappelle qu'un élément U de \mathbb{B} est dit *extremal* si toute écriture du type $U = \frac{1}{2}(V + W)$ avec $V, W \in \mathbb{B}$ implique U = V = W.

Théorème. — $\mathcal{O}(n)$ est l'ensemble des points extrémaux de la boule unité.

 $\begin{array}{ll} \textit{D\'{e}monstration}. \ -- \ \text{Notons tout d'abord que si} \ \|U\| < 1 \ \text{alors} \ U \ \text{n'est pas extr\'{e}mal} \ ; \ \text{en effet, si} \ U = 0 \ \text{alors} \ U = \frac{1}{2} \Big(\frac{1}{\|U\|} U + (2 - \frac{1}{\|U\|}) U \Big). \end{array}$

D'autre part, tout élément $U \in \mathcal{O}(n)$ est extrémal; en effet, écrivons $U = \frac{1}{2}(V + W)$ alors, pour tout $x \in \mathbb{R}^n$, on a 2Ux = Vx + Wx d'où

 $4 \|x\|^2 = \|2Ux\|^2 = \|Vx\|^2 + \|Wx\|^2 + 2\langle Vx, Wx \rangle \le \|V\|^2 \|x\|^2 + \|W\|^2 \|x\|^2 + \|V\| \|W\| \|x\|^2 \le 4 \|x\|^2$ ce qui implique que les inégalités ci-dessus sont en fait des égalités *i.e.* on a

$$||Vx|| = ||x||$$
, $||Wx|| = ||x||$ et $\langle Vx, Wx \rangle = ||Vx|| ||Wx||$;

la dernière égalité implique que Vx et Wx sont positivement liés et le deux premières montrent donc qu'on a en fait Vx=Wx, d'où U=V=W.

Soit A un élément extrémal de la boule unité, on en considère une décomposition polaire A = SO, ce qui peut aussi s'écrire

$$A = {}^t\Omega D\Omega O$$
 où $D = \begin{bmatrix} d_1 & & \\ & \ddots & \\ & & d_n \end{bmatrix}$

et $\Omega, O \in \mathcal{O}(n)$ et $\lambda_1, \ldots, \lambda_n \geq 0$. D'autre part on a $||A||| = ||D||| = \sup_{1 \leq i \leq n} d_i$ donc $0 \leq d_i \leq 1$ pour tout i. Supposons que l'un des d_i soit non nul, par exemple $d_1 \neq 0$, et posons

$$D_1 = \begin{bmatrix} 1 & & & & \\ & d_2 & & & \\ & & \ddots & & \\ & & & d_n \end{bmatrix} \text{ et } D_2 = \begin{bmatrix} 2d_1 - 1 & & & \\ & d_2 & & & \\ & & & \ddots & \\ & & & d_n \end{bmatrix}$$

puis $V = {}^t\Omega D_1\Omega O$ et $W = {}^t\Omega D_2\Omega O$ alors $V \neq W$, $||V|| = ||D_1|| \leq 1$, $||W|| = ||D_2|| \leq 1$ et $A = \frac{1}{2}(U+W)$ ce qui contredit le caractère extrémal de A. Par conséquent, tous les d_i sont nuls i.e. $A = {}^t\Omega \Omega O = O \in \mathcal{O}(n)$.

Leçon concernée

10 Applications linéaires continues entre espaces vectoriels normés. Exemples et applications.

Compléments

Applications de la caractérisation du dual de $\mathcal{M}_n(\mathbb{K})$. —

On a vu que les formes linéaires sur $\mathcal{M}_n(\mathbb{K})$ sont les applications

$$\mathcal{M}_n(\mathbb{K}) \to \mathbb{K}, M \mapsto \operatorname{Tr}(AM) \text{ où } A \in \mathcal{M}_n(\mathbb{K}).$$

Proposition. — Si f est une forme linéaire sur $\mathcal{M}_n(\mathbb{K})$ telle que f(MN) = f(NM) pour tous M, N de $\mathcal{M}_n(\mathbb{K})$ alors il existe $\lambda \in \mathbb{K}$ tel que $f = \lambda \operatorname{Tr}$.

Démonstration. — Soit $A \in \mathcal{M}_n(\mathbb{K})$ telle que $f(M) = \operatorname{Tr}(AM)$ pour tout $M \in \mathcal{M}_n(\mathbb{K})$; l'hypothèse s'écrit donc $\operatorname{Tr}(AMN) = \operatorname{Tr}(ANM)$, pour tous $M, N \in \mathcal{M}_n(\mathbb{K})$, i.e. $\operatorname{Tr}((AM - MA)N) = 0$. Puisque, pour M fixée, la forme linéaire $N \mapsto \operatorname{Tr}((AM - MA)N)$ est nulle, c'est donc que AM = MA. Ainsi, A commute avec toute matrice $M \in \mathcal{M}_n(\mathbb{K})$ or le centre de $\mathcal{M}_n(\mathbb{K})$ est composé des homothéties donc $A = \lambda I$ et il s'ensuit que $f = \lambda Tr$.

Remarque. — Le fait que le centre de $\mathcal{M}_n(\mathbb{K})$ soit composé des homothéties peut se montrer de la façon suivante : $A = (a_{i,j})_{i,j}$ commute avec la matrice $E_{i,j}$ de la base canonique alors

$$\sum_{k=1}^{n} a_{k,i} E_{k,j} = \sum_{1 \le k,l \le n} a_{k,l} E_{k,l} E_{i,j} = A E_{i,j} = E_{i,j} A = \sum_{1 \le k,l \le n} a_{k,l} E_{i,j} E_{k,l} = \sum_{l=1}^{n} a_{j,l} E_{i,l}$$

d'où $a_{k,i} = 0$ pour $k \neq i$ et $a_{i,i} = a_{j,i}$.

Remarque. — On peut donner une preuve directe de la proposition. Soit $1 \le i, j \le n$ avec $i \ne j$, on a

$$f(E_{i,j}) = f(E_{i,i}E_{i,j}) = f(E_{i,j}E_{i,i}) = f(0) = 0$$
 et $f(E_{i,i}) = f(E_{i,j}E_{j,i}) = f(E_{j,i}E_{i,j}) = f(E_$

Si on note λ la valeur commune des $f(E_{i,i})$, on vérifie que les formes linéaires f et λ Tr coïncident sur une base de $\mathcal{M}_n(\mathbb{K})$ donc sont égales.

Proposition. — $GL_n(\mathbb{K})$ coupe tout hyperplan de $\mathcal{M}_n(\mathbb{K})$.

Démonstration. — Un hyperplan de $\mathcal{M}_n(\mathbb{K})$ est le noyau d'une forme linéaire $M \mapsto \operatorname{Tr}(AM)$ donc il s'agit de trouver M inversible telle que $\operatorname{Tr}(AM) = 0$. Notons r le rang de A alors il existe P, Q inversibles telles que

$$PAQ = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix} =: J_r$$

or Tr (AM) = Tr $(P^{-1}J_rQ^{-1}M)$ = Tr $(J_rQ^{-1}MP^{-1})$ *i.e.* il s'agit de trouver N inversible telle que Tr (J_rN) = 0 (on pose alors M = QNP). On considère la matrice de permutation

$$N = \left[\begin{array}{cc} 0 & 1 \\ I_{n-1} & 0 \end{array} \right]$$

qui est bien inversible et telle que J_rN soit de diagonale nulle.

Proposition. — Soit $A, B \in \mathcal{M}_n(\mathbb{K})$, on a équivalence entre

- (i) il existe $M \in \mathcal{M}_n(\mathbb{K})$ telle que AM + MA = B
- (ii) pour tout $C \in \mathcal{M}_n(\mathbb{K})$ telle que AC + CA = 0, on a Tr (BC) = 0

Démonstration. — $(i) \Rightarrow (ii)$ Si $C \in \mathcal{M}_n(\mathbb{K})$ vérifie AC + CA = 0 alors

$$\operatorname{Tr}(BC) = \operatorname{Tr}((AM + MA)C) = \operatorname{Tr}(AMC) + \operatorname{Tr}(MAC) = \operatorname{Tr}(CAM) + \operatorname{Tr}(ACM)$$

i.e. Tr
$$(BC)$$
 = Tr $((CA + AC)M)$ = 0.

 $(ii) \Rightarrow (i)$ On considère l'endomorphisme $f: \mathcal{M}_n(\mathbb{K}) \to \mathcal{M}_n(\mathbb{K}), M \mapsto AM + MA$, il s'agit de montrer que $B \in \text{Im } f$. L'application $T: C \mapsto T_C$, où $T_C(M) = \text{Tr } (CM)$, définit un isomorphisme de $\mathcal{M}_n(\mathbb{K})$ sur son dual et la condition (ii) signifie que $T_C(B) = 0$ dès que $C \in \text{ker } f$ i.e.

$$B \in (T(\ker f))^{\circ} = \{ N \in \mathcal{M}_n(\mathbb{K}) : \forall \varphi \in T(\ker f), \varphi(N) = 0 \}.$$

Mais la première implication donne Im $f \subset (T(\ker f))^{\circ}$ or (puisque T est un isomorphisme)

$$\dim(T(\ker f))^{\circ} = \dim \mathcal{M}_n(\mathbb{K}) - \dim T(\ker f) = \dim \mathcal{M}_n(\mathbb{K}) - \dim \ker f = \dim \operatorname{Im} f$$
d'où $B \in \operatorname{Im} f$.

Preuve du théorème de Hahn-Banach et de ses corollaires. —

Théorème de Hahn-Banach. — Soit E un espace vectoriel normé, M un sous-espace de E et A un ouvert convexe non vide de E tel que $M \cap A = \emptyset$. Alors il existe un hyperplan linéaire fermé H de E tel que $M \subset H$ et $H \cap A = \emptyset$.

 $D\acute{e}monstration$. — Notons \mathcal{F} l'ensemble des sous-espaces N de E qui contiennent M et n'intersectent pas A, on ordonne \mathcal{F} par inclusion de sorte que ce soit un ensemble inductif, alors le lemme de Zorn donne un élément maximal H; on pose alors

$$\Omega = H + \bigcup_{\lambda > 0} \lambda A = \bigcup_{h \in H} \left(h + \bigcup_{\lambda > 0} \lambda A \right)$$

qui est un ouvert de E.

• On a $\Omega \cap (-\Omega) = \emptyset$. En effet, sinon il existe $x = h_1 + \lambda_1 a_1 = h_2 - \lambda_2 a_2$ avec $h_1, h_2 \in H$, $\lambda_1, \lambda_2 > 0$ et $a_1, a_2 \in A$; on peut alors écrire

$$\frac{\lambda_1}{\lambda_1+\lambda_2}a_1+\frac{\lambda_2}{\lambda_1+\lambda_2}a_2=\frac{1}{\lambda_1+\lambda_2}(h_1-h_2)\in H$$

alors que cet élément appartient à A par convexité, c'eest impossible puisque $H \cap A = \emptyset$.

• On a $E = H \cup \Omega \cup (-\Omega)$. En effet, sinon on considère $x \in E \setminus (H \cup \Omega \cup (-\Omega))$ puis on pose $\widetilde{H} = H \oplus \mathbb{R}x$ alors $H \subsetneq \widetilde{H}$ donc, par maximalité de H, on doit avoir $\widetilde{H} \cap A \neq \emptyset$ *i.e.* il existe $x \in H$ et $\lambda \neq 0$ tels que $y = h + \lambda x \in \widetilde{H} \cap A$. Mais comme $y \in A$, on a

$$x = -\frac{1}{\lambda}h + \frac{1}{\lambda}y \in \Omega \cup (-\Omega)$$

ce qui contredit le choix de x.

- On a $H \cap (\Omega \cup (-\Omega)) = \emptyset$. En effet, puisque H coupe Ω si et seulement si H coupe $(-\Omega)$, il suffit de montrer que $H \cap \Omega = \emptyset$, on suppose donc qu'il existe $x = h + \lambda a$ dans H où $h \in H$, $\lambda > 0$ et $a \in A$, alors $a = \frac{1}{\lambda}(x h) \in A \cap H$ ce qui est impossible.
- Puisque Ω est ouvert et $H = E \setminus (\Omega \cup (-\Omega))$, H est fermé dans E.
- Enfin, H est un hyperplan linéaire. En effet, considérons un élément x non nul dans $\Omega \setminus H$ et posons $\widetilde{H} = H \oplus \mathbb{R}x$. Si $\widetilde{H} \neq E$ alors il existe $y \in (-\Omega)$ tel que $y \notin \widetilde{H}$ (on peut prendre y dans $(-\Omega)$ puisque $(-\Omega) \subset \widetilde{H}$ implique $\Omega \subset \widetilde{H}$) et on considère alors l'application

$$f: [0,1] \to E, t \mapsto tx + (1-t)y.$$

On a $0 \in f^{-1}(-\Omega)$ et $1 \in f^{-1}(\Omega)$ or $f^{-1}(-\Omega)$ et $f^{-1}(\Omega)$ sont deux ouverts non vides du connexe [0,1] qui sont disjoints puisque $\Omega \cap (-\Omega) = \emptyset$, il s'ensuit que $f^{-1}(-\Omega) \cup f^{-1}(-\Omega) \subsetneq [0,1]$. Ainsi, il existe $t \in]0,1[$ tel que $f(t) \in H$ i.e.

$$y = \frac{1}{1 - t}(f(t) - tx) \in H \oplus \mathbb{R}x = \widetilde{H}$$

Sébastien Pellerin

ce qui est impossible par choix de y. On a donc $H \oplus \mathbb{R}x = \widetilde{H} = E$ i.e. H est un hyperplan.

Corollaire. — Soit E un \mathbb{R} -espace vectoriel normé, F un convexe fermé de E et C un convexe compact de E tels que $F \cap C = \emptyset$. Alors il existe une forme linéaire continue φ telle que :

$$\sup_{x \in C} \varphi(x) < \inf_{y \in F} \varphi(y).$$

Démonstration. — On pose G = F - C, alors G est fermé et ne contient pas 0. En effet, $0 \notin G$ puisque $F \cap C = \emptyset$ et considérons deux suites $(x_n)_n$ et $(y_n)_n$ respectivement dans F et C telles que la suite $(z_n)_n$, où $z_n = x_n - y_n$, converge vers $z \in E$. Puisque C est compact, il existe $\psi : \mathbb{N} \to \mathbb{N}$ strictement croissante telle que la suite $(y_{\psi(n)})_n$ converge vers $y \in C$. Notons x = y + z alors

$$\lim_{n \to +\infty} x_{\psi(n)} = \lim_{n \to +\infty} \left(y_{\psi(n)} + z_{\psi(n)} \right) = y + z = x.$$

Or F est fermé donc $x \in F$ i.e. $z = x - y \in F - C = G$. En particulier, il existe r > 0 tel que $\mathbb{B}(0,r) \cap G = \emptyset$.

On pose $A=G+\mathbb{B}(0,r)=G-\mathbb{B}(0,r)$, alors $0\notin A$ et il existe une forme linéaire continue $\varphi:E\to\mathbb{R}$ telle que $\varphi(z)>0$ pour tout $z\in A$. En effet, on a $0\notin A$ et puisque A est un ouvert convexe, on pose $M=\{0\}$ et on applique le théorème de Hahn-Banach géométrique donc il existe un hyperplan fermé H tel que $H\cap A=\emptyset$. En écrivant $H=\ker\varphi$ avec $\varphi:E\to\mathbb{R}$ linéaire, on voit que φ est continue. Comme $\ker\varphi\cap A=\emptyset$, on a $0\notin\varphi(A)$ avec $\varphi(A)$ convexe dans \mathbb{R} donc $\varphi(A)$ est un intervalle et on a donc soit $\varphi(A)\subset]0,+\infty[$, soit $\varphi(A)\subset]-\infty,0[$; quitte à prendre $-\varphi$ au lieu de φ , on a bien $\varphi(z)>0$ pour tout $z\in A$.

On a alors $m = \inf_{x \in G} \varphi(x) > 0$. En effet, supposons que m = 0, alors il existe une suite $(x_n)_n$ dans G telle que la suite $(\varphi(x_n))_n$ tende vers 0. Puisque φ est non nulle, il existe $u \in \mathbb{B}(0,r)$ tel que $\varphi(u) \neq 0$. On pose

$$v = -\frac{|\varphi(u)|}{\varphi(u)} \cdot u ,$$

alors on a ||v|| = ||u|| donc $v \in \mathbb{B}(0,r)$. Comme $x_n + v \in G + \mathbb{B}(0,r) = A$, on a

$$0 < \varphi(x_n + v) = \varphi(x_n) + \varphi(v) = \varphi(x_n) - |\varphi(u)|$$

d'où

$$0 < |\varphi(u)| < \varphi(x_n) \xrightarrow[n \to +\infty]{} 0$$

ce qui est impossible. On a donc bien m > 0.

Considérons maintenant $x \in C$ et $y \in F$, alors $y - x \in G$ d'où $\varphi(y) - \varphi(x) \ge m$ donc

$$\forall y \in F, \ \sup_{x \in C} \varphi(x) < \sup_{x \in C} (m + \varphi(x)) \le m + \varphi(y)$$

d'où

$$\sup_{x \in C} \varphi(x) \leq m \inf_{y \in F} \varphi(y) < \inf_{y \in F} \varphi(y).$$

Corollaire. — Soit E un espace vectoriel normé et A une partie compacte de E. Alors $x \in E$ est adhérent à l'enveloppe convexe de A si et seulement si pour tout $\varphi \in E'$, on a

$$\varphi(x) \le \sup_{y \in A} \varphi(y).$$

Sébastien Pellerin

Démonstration. — On pose $F = \{x\}$ et on note C l'adhérence de l'enveloppe convexe de A, alors F est un convexe fermé et C est un convexe compact (d'après le théorème de Caratheodory). Si $x \notin F$ alors $C \cap F = \emptyset$ avec C convexe compact et F convexe fermé donc le corollaire précédent donne une forme linéaire φ telle que

$$\sup_{y \in C} \varphi(y) < \inf_{y \in F} \varphi(y) \quad i.e. \quad \sup_{y \in C} \varphi(y) < \varphi(x).$$

Réciproquement, si $x \in C$ alors il existe $(x_n)_n$ dans l'enveloppe convexe de A tendant vers x, on a donc $\varphi(x_n) \leq \sup_{y \in C} \varphi(y)$ pour tout $\varphi \in E'$ et tout n, d'où $\varphi(x) \leq \sup_{y \in C} \varphi(y)$ par continuité de φ .

Une caractérisation géométrique de SO(n) dans $SL_n(\mathbb{R})$. —

Proposition. — On a $d_2(0, SL_n(\mathbb{R})) = \inf_{M \in SL_n(\mathbb{R})} \|M\|_2 = \sqrt{n}$ et le lieu de $SL_n(\mathbb{R})$ où cette distance est atteinte est exactement $\mathcal{SO}(n)$.

Démonstration. — On considère les applications f et q de $\mathcal{M}_n(\mathbb{R})$ dans \mathbb{R} définies pour $M=(m_{i,j})$ par

$$f(M) = \det M - 1$$
 et $q(M) = ||M||_2^2 = \sum_{1 \le i, j \le n} m_{i,j}^2 = \text{Tr }({}^t M M).$

Il s'agit de deux fonctions de classe C^{∞} puisque ce sont des fonctions polynômiales en les n^2 variables réelles $m_{i,j}$. De plus, on a $\frac{\partial q}{\partial m_{i,j}}(M) = 2m_{i,j}$ pour tous i, j, i.e. $\nabla q(M) = 2M$. Si $M_{i,j}$ désigne le cofacteur

de $m_{i,j}$ alors det $M = \sum_{j=1}^{n} m_{i,j} M_{i,j}$ mais $M_{i,j}$ ne dépend pas de la variable $m_{i,j}$ d'où $\frac{\partial f}{\partial m_{i,j}}(M) = M_{i,j}$

donc $\nabla f(M)$ est la comatrice Com(M) de M. On souhaite minimiser l'expression q(M) sous la contrainte f(M) = 0 (ce minimum existe bien puisque $SL_n(\mathbb{R})$ est un fermé de $\mathcal{M}_n(\mathbb{R})$); on rappelle le théorème des extrema liés :

Lemme. — Soit \mathcal{U} un ouvert de \mathbb{R}^N et $u, v : \mathcal{U} \to \mathbb{R}^N$ de classe \mathcal{C}^1 telles que $\mathcal{V} = \{x \in \mathcal{U}; v(x) = 0\} \neq \emptyset$, $u_{|\mathcal{V}|}$ a un extremum local en $a \in \mathcal{V}$ et $\nabla v(a) \neq 0$. Alors il existe $\lambda \in \mathbb{R}$ tel que $\nabla u(a) = \lambda \nabla v(a)$.

Si $\inf_{M \in SL_n(\mathbb{R})} \|M\|_2$ est atteint en $A \in SL_n(\mathbb{R})$ alors il existe un réel μ tel que $A = \mu Com(A)$ or $\det A = \det Com(A) = 1$ d'où $\mu = 1$. Or $A^{-1} = {}^tCom(A)$ donc ${}^tAA = I$ i.e. $A \in \mathcal{O}(n)$ d'où $A \in \mathcal{SO}(n)$. Réciproquement, si $A \in \mathcal{SO}(n)$ alors on a q(A) = n.

Distance au groupe orthogonal. —

Proposition. — Pour tout $M \in \mathcal{M}_n(\mathbb{R})$, on a $d(M, \mathcal{O}(n)) = |||\sqrt{tMM} - I||_2$.

Démonstration. — Notons tout d'abord que si S et T sont symétriques positives et si \langle , \rangle désigne le produit scalaire euclidien sur $\mathcal{M}_n(\mathbb{R})$ alors $\langle S, T \rangle \geq 0$. Par densité, il suffit de vérifie cela pour T symétrique définie positive; on note \sqrt{T} l'unique racine carré de T alors $R = \sqrt{T}S\sqrt{T}$ est symétrique positive et on a $\langle S, T \rangle = \text{Tr }(ST) = \text{Tr }(\sqrt{T}ST\sqrt{T}^{-1}) = \text{Tr }(R) \geq 0$.

On considère l'action de $\mathcal{O}(n) \times \mathcal{O}(n)$ sur $\mathcal{M}_n(\mathbb{R})$ donnée par $(\Omega_1, \Omega_2) \star M = \Omega_1 M \Omega_2^{-1}$ alors on a $\|(\Omega_1, \Omega_2) \star M\|_2 = \|M\|_2$ donc tous les points d'une même orbite sont à la même distance de $\mathcal{O}(n)$. Soit M = SO une décomposition polaire de M, alors il existe $\Omega \in \mathcal{O}(n)$ telle que $S = {}^t\Omega D\Omega$ avec D diagonale à coefficients positifs; il s'ensuit que D est dans l'orbite de M or on a

$$\left\|D-\mathbf{I}\right\|_2=\left\|\ ^t\Omega(D-\mathbf{I})\Omega\right\|_2=\left\|\ ^t\Omega D\Omega-\mathbf{I}\right\|_2=\left\|S-\mathbf{I}\right\|_2=\left\|\sqrt{M^tM}-\mathbf{I}\right\|_2$$

donc il reste à montrer que $||D - I||_2$ est la distance de D à $\mathcal{O}(n)$.

Soit $U \in \mathcal{O}(n)$ et $\delta := \|D - U\|_2^2 - \|D - I\|_2^2$, montrons que $\delta \ge 0$. En développant, on obtient

$$\delta = 2 \langle \mathbf{I} - U, D \rangle = 2 \langle \mathbf{I} - E, D \rangle \quad \text{où} \quad E = \frac{1}{2} (U +^t U).$$

Sébastien Pellerin

Si $\| \|_2$ est la norme induite sur $\mathcal{M}_n(\mathbb{R})$ par la norme $\| \|_2$ de \mathbb{R}^n alors $\| U \|_2 = 1$ donc $\| E \|_2 \le 1$ et il s'ensuit que la matrice symétrique I - E est positive puisque

$$\langle (\mathbf{I} - E)X, X \rangle = \|X\|_2^2 - \langle EX, X \rangle \ge \|X\|_2^2 (1 - \|E\|_2) \ge 0.$$

D'après la remarque préliminaire, on a donc $\delta = 2\langle \mathbf{I} - E, D \rangle \geq 0$.

Références

- M. Alessandri, Thèmes de géométrie. Groupes en situation géométrique, Dunod, 1999.
- S. Francinou, H. Gianella et S. Nicolas, Oraux X-ENS, algèbre 1, Cassini, 2001.
- H. Queffélec et C. Zuily, Éléments d'analyse pour l'agrégation, Dunod, 2002.