DÉVELOPPEMENT 19

THÉORÈME DE JORDAN

On considère une application T-périodique $g: \mathbb{R} \to \mathbb{C}$ de classe \mathcal{C}^1 telle que g soit injective sur [0, T[, g(0) = 0, g'(0) = 1 et |g'(t)| = 1 pour tout t; on note $\Gamma = g(\mathbb{R})$.

Lemme. — Il existe $\alpha > 0$ tel que, pour tout $0 < \varepsilon < \alpha$, les courbes

$$g_{\varepsilon}^{+}(t) = g(t) + i\varepsilon g'(t)$$
 et $g_{\varepsilon}^{-}(t) = g(t) - i\varepsilon g'(t)$

v'erifient

$$\Gamma \cap g_{\varepsilon}^{+}(\mathbb{R}) = \emptyset \quad et \quad \Gamma \cap g_{\varepsilon}^{-}(\mathbb{R}) = \emptyset.$$

 $D\acute{e}monstration$. — Puisque g est de classe $\mathcal{C}^1, \, g'$ est uniformément continue sur [0,2L] donc

$$\exists \eta > 0 \ / \ \forall s, t \in \mathbb{R}, |s - t| < \eta \Rightarrow |g'(s) - g'(t)| < 1.$$

Quitte à fixer t et à considérer la fonction définie par h(s) = g(s) - g(t) - (s - t)g'(t), il découle du théorème des accroissements finis que

$$\forall s, t \in \mathbb{R}, |s-t| < \eta \Rightarrow |g(s) - g(t) - (s-t)g'(t)| < |s-t|.$$

Puisque $(s,t) \mapsto |g(s) - g(t)|$ est continue et puisque l'ensemble

$$K = [0, L]^2 \cap \{(s, t) \in \mathbb{R}^2 ; \forall n \in \mathbb{Z}, |s - t + nL| \ge \eta\}$$

est compact, il existe $(s_0, t_0) \in K$ tel que

$$\alpha = |g(s_0) - g(t_0)| = \inf_{(s,t) \in K} |g(s) - g(t)|.$$

Puisque $(s_0, t_0) \in K$, on ne peut pas avoir $s_0 = t_0 + nL$ avec $n \in \mathbb{Z}$ donc $g(s_0) \neq g(t_0)$ i.e. $\alpha > 0$. Si $(s,t) \in \mathbb{R}^2$ vérifient $|s-t+nL| \geq \eta$ pour tout $n \in \mathbb{Z}$, alors on note $s' = s+kL \in [0,L]$ et $t' = t + \ell L \in [0,L]$ où $k,\ell \in \mathbb{Z}$ et on a donc aussi $|s-t+nL| \geq \eta$ pour tout $n \in \mathbb{Z}$. D'après ce qui précède, il vient $|g(s) - g(t)| = |g(s') - g(t')| \geq \alpha$. On a donc

$$\forall (s,t) \in \mathbb{R}^2, (\forall n \in \mathbb{Z}, |s-t+nL| \ge \eta) \Rightarrow |g(s)-g(t)| \ge \alpha > 0.$$

Supposons que $\Gamma \cap g_{\varepsilon}^+(\mathbb{R}) \neq \emptyset$ i.e. il existe $s,t \in \mathbb{R}$ tels que $g(t) = g(s) + i\varepsilon g'(s)$, d'où

$$|g(t) - g(s)| = |i\varepsilon g'(s)| = \varepsilon < \alpha$$

et il résulte du choix de α qu'il existe $n \in \mathbb{Z}$ tel que $|s - t + nL| < \eta$ donc, quitte à changer t en t - nL, on peut supposer que $|s - t| < \eta$. D'après le choix de η , on a donc

$$\left| -i\varepsilon g'(s) - (t-s)g'(s) \right| = \left| g(t) - g(s) - (t-s)g'(s) \right| < |t-s|$$

or |g'(s)| = 1 d'où $|-i\varepsilon - (t-s)| < |t-s|$, ce qui est absurde. On a donc $\Gamma \cap g_{\varepsilon}^+(\mathbb{R}) = \emptyset$ et on obtient de même $\Gamma \cap g_{\varepsilon}^-(\mathbb{R}) = \emptyset$.

Théorème de Jordan. — $\mathbb{C} \setminus \Gamma$ a deux composantes connexes.

Démonstration. — • Soit $z \in \mathbb{C} \setminus \Gamma$ alors $\theta(t) = |z - g(t)|^2$ est L-périodique et continue donc atteint un minimum $g(t_1)$ mais $\theta(t) = (z - g(t))(\overline{z} - \overline{g(t)}) = z\overline{z} - g(t)\overline{z} - z\overline{g(t)} + g(t)\overline{g(t)}$ donc

$$\theta'(t) = -g'(t)\overline{z} - z\overline{g'(t)} + g(t)'\overline{g(t)} + g(t)\overline{g(t')} = g'(t)(\overline{g(t)} - \overline{z}) + (g(t) - z)\overline{g'(t)} = 2\operatorname{Re}\left(g'(t)(g(t) - z)\right)$$

d'où Re $(g'(t_1)(g(t_1)-z))=0$ i.e. $g'(t_1)$ et $g(t_1)-z$ sont orthogonaux.

La demi-droite $[g(t_1), z)$ contient $g(t_1) + i\varepsilon g'(t_1)$ ou $g(t_1) - i\varepsilon g'(t_1)$, par exemple $g(t_1) - i\varepsilon g'(t_1)$. Deux cas sont possibles:

- soit $g(t_1) i\varepsilon g'(t_1)$ est sur le segment $[g(t_1), z]$ auquel cas la définition de $g(t_1)$ (comme étant le point de Γ à distance minimale de z) assure que le segment $[g(t_1) i\varepsilon g'(t_1), z]$ ne contient aucun point de Γ ,
- soit z est sur le segment $[g(t_1), g(t_1) i\varepsilon g'(t_1)]$ auquel cas tout point du segment $[z, g(t_1) i\varepsilon g'(t_1), z]$ est de la forme $g(t_1) i\delta g'(t_1)$ avec $\delta < \varepsilon$ mais on a vu que $g_{\delta}^-(\mathbb{R}) \cap \Gamma = \emptyset$ donc le segment $[z, g(t_1) i\varepsilon g'(t_1)]$ ne contient aucun point de Γ.

Dans les deux cas, z peut être joint par un segment ne coupant pas Γ au point $g(t_1) - i\varepsilon g'(t_1)$ donc, en considérant l'arc $g_{\varepsilon}^-(\mathbb{R})$, au point $g_{\varepsilon}^-(0)$. Ainsi, tout point de $z \in \mathbb{C} \setminus \Gamma$ peut être joint par un arc à $g_{\varepsilon}^-(\mathbb{R})$ ou $g_{\varepsilon}^+(\mathbb{R})$. Il s'ensuit que $\mathbb{C} \setminus \Gamma$ a au plus deux composantes connexes.

• Notons que $z_{\varepsilon}^+=g_{\varepsilon}^+(0)=i\varepsilon$ et $z_{\varepsilon}^-=g_{\varepsilon}^-(0)=-i\varepsilon$ donc

$$\operatorname{Ind}_{g}(z_{\varepsilon}^{+}) - \operatorname{Ind}_{g}(z_{\varepsilon}^{-}) = \frac{1}{2i\pi} \int_{-L/2}^{L/2} \frac{g'(t)}{g(t) - z_{\varepsilon}^{+}} dt - \frac{1}{2i\pi} \int_{-L/2}^{L/2} \frac{g'(t)}{g(t) - z_{\varepsilon}^{-}} dt$$

$$= \frac{1}{2i\pi} \int_{-L/2}^{L/2} g'(t) \frac{2i\varepsilon}{g(t)^{2} + \varepsilon^{2}} dt$$

$$= \frac{\varepsilon}{\pi} \int_{-L/2}^{L/2} \frac{g'(t)}{g(t)^{2} + \varepsilon^{2}} dt.$$

On pose $a(t) = \frac{g(t)}{t}$ et a(0) = 1 alors il existe $0 < \delta < \frac{L}{2}$ tel que $\left| a(t)^2 - 1 \right| < \frac{1}{2}$ pour tout $-\delta < t < \delta$. Comme g ne s'annule pas sur le compact $\{t; \delta \leq |t| \leq \frac{L}{2}\}$, on a

$$\int_{\delta \leq |t| \leq \frac{L}{2}} \frac{g'(t)}{g(t)^2 + \varepsilon^2} dt \xrightarrow{\varepsilon \to 0^+} \int_{\delta \leq |t| \leq \frac{L}{2}} \frac{g'}{g^2} \text{ d'où } \frac{\varepsilon}{\pi} \int_{\delta \leq |t| \leq \frac{L}{2}} \frac{g'(t)}{g(t)^2 + \varepsilon^2} dt \xrightarrow{\varepsilon \to 0^+} 0.$$

D'autre part

$$\frac{\varepsilon}{\pi} \int_{|t| < \delta} \frac{g'(t)}{g(t)^2 + \varepsilon^2} dt = \frac{\varepsilon^2}{\pi} \int_{|u| < \frac{\delta}{2}} \frac{g'(\varepsilon u)}{g(\varepsilon u)^2 + \varepsilon^2} du = \frac{1}{\pi} \int_{\mathbb{R}} \frac{g'(\varepsilon u)}{u^2 a(\varepsilon u)^2 + 1} \mathbbm{1}_{[-\frac{\delta}{\varepsilon}, \frac{\delta}{\varepsilon}]}(u) du$$

mais

$$\frac{g'(\varepsilon u)}{u^2 a(\varepsilon u)^2 + 1} 1\!\!1_{\left[-\frac{\delta}{\varepsilon}, \frac{\delta}{\varepsilon}\right]}(u) \xrightarrow[\varepsilon \to 0^+]{} \frac{1}{u^2 + 1}$$

et Re $a(\varepsilon u)^2 \geq \frac{1}{2}$ pour $|u| \leq \frac{\delta}{\varepsilon}$ donc

$$\left| \frac{g'(\varepsilon u)}{u^2 a(\varepsilon u)^2 + 1} 1\!\!1_{\left[-\frac{\delta}{\varepsilon}, \frac{\delta}{\varepsilon} \right]}(u) \right| \le \frac{\|g'\|_{\infty}}{\frac{u^2}{2} + 1}$$

et cette majoration vaut aussi pour $|u|>\frac{\delta}{\varepsilon}.$ Le théorème de convergence dominée donne alors

$$\frac{1}{\pi} \int_{\mathbb{R}} \frac{g'(\varepsilon u)}{u^2 a(\varepsilon u)^2 + 1} \mathbbm{1}_{\left[-\frac{\delta}{\varepsilon}, \frac{\delta}{\varepsilon}\right]}(u) du \xrightarrow[\varepsilon \to 0^+]{} \frac{1}{\pi} \int_{\mathbb{R}} \frac{du}{u^2 + 1} = 1$$

i.e. $\operatorname{Ind}_g(z_{\varepsilon}^+) - \operatorname{Ind}_g(z_{\varepsilon}^+) \xrightarrow[\varepsilon \to 0^+]{} 1$. Or la fonction $z \mapsto \operatorname{Ind}_g(z)$ est continue sur $\mathbb{C} \setminus g$ et à valeurs dans \mathbb{Z} donc $\mathbb{C} \setminus \Gamma$ n'est pas connexe.

Leçons concernées

- 03 Utilisation de la notion de compacité
- 04 Connexité. Exemples et applications
- 16 Étude de courbes. Exemples

Références

S. Gonnord et N. Tosel, Calcul différentiel, Ellipses, 1998.

Première épreuve du concours d'entrée à l'École Polytechnique 1993, option M', in B. Gugger, *Problèmes corrigés de mathématiques posés au concours de Polytechnique, tome 5*, Ellipses, 1996.