Réduction d'un endomorphisme en dimension finie.

Par Nicolas Lanchier ¹

1 Introduction.

Dans toute la suite, K est un copre commutatif et E un K-espace vectoriel de dimension finie.

DÉFINITION 1.1 — Soit $f \in L(E)$ une application linéaire. Un élément $\lambda \in K$ est appelé valeur propre de l'endomorphisme f si $\det(f - \lambda \cdot \mathrm{id}) = 0$. [1], Sect. 4.1

DÉFINITION 1.2 — Un vecteur $x \in E$ est appelé vecteur propre de f associé à la valeur propre λ si $f(x) = \lambda \cdot x$. [1], Sect. 4.1

Proposition 1.3 — Si λ est une valeur propre de f l'ensemble $E_{\lambda} = \text{Ker}(f - \lambda \cdot \text{id})$ est un sous-espace vectoriel de E stable par f appelé sous-espace propre de f associé à la valeur propre λ . [1], Sect. 4.1

DÉFINITION 1.4 — Soit A la matrice d'une application linéaire $f \in L(E)$. On appelle polynôme caractéristique de A le polynôme $P_A(X) = \det(A - X \cdot id)$. [1], Sect. 4.1

PROPOSITION 1.5 — Il existe un unique polynôme $P \in K[X]$ unitaire et de degré minimal tel que P(A) = 0. Un tel polynôme est appelé polynôme minimal de la matrice A. [1], Sect. 4.2

2 Diagonalisation et trigonalisation.

DÉFINITION 2.1 — Une matrice A est dite diagonalisable (resp. trigonalisable) si elle est semblable à une matrice diagonale (resp. triangulaire). [1], Sect. 4.1

DÉFINITION 2.2 — Un endomorphisme $f \in L(E)$ est diagonalisable (resp. trigonalisable) si sa matrice dans une base quelconque de E est diagonalisable (resp. trigonalisable). [1], Sect. 4.1

Théorème 2.3 — Pour tout endomorphisme $f \in L(E)$, les propriétés suivantes sont équivalentes :

- 1. f est diagonalisable;
- 2. P_f est scindé sur K, et pour toute racine λ de P_f , l'ordre de multiplicité de $\lambda = \dim E_{\lambda}$;
- 3. Il existe des valeurs propres $\lambda_1, \lambda_2, \ldots, \lambda_r$ telles que $E = E_{\lambda_1} \oplus E_{\lambda_2} \oplus \cdots \oplus E_{\lambda_r}$.

[1], Sect. 4.1

Théorème 2.4 — Un endomorphisme $f \in L(E)$ est diagonalisable si et seulement si son polynôme minimal est scindé à racines simples. [1], Sect. 4.2

Théorème 2.5 — Un endomorphisme $f \in L(E)$ est trigonalisable si et seulement si son polynôme caractéristique est scindé sur K. [1], Sect. 4.1

THÉORÈME 2.6 — Pour tout $r \in \mathbb{N}$, posons $\Gamma_r = \{ P \in \mathbb{C}[X] ; \deg P = r \}$. Alors pour tous n, $m \geq 1$, il existe une application continue $R : \Gamma_n \times \Gamma_m \longrightarrow \mathbb{C}$ appelée résultant telle que $R(P,Q) \neq 0$ si et seulement si P et Q sont premiers entre-eux. [1], Sect. 1.4

APPLICATION 2.7 — Soit D l'ensemble des matrices diagonalisables de $M_n(\mathbb{C})$. L'intérieur de D est l'ensemble des matrices dont les valeurs propres sont toutes distinctes. [1], Sect. 4.5

THÉORÈME 2.8 — Soient f et g deux endomorphismes diagonalisables (resp. trigonalisables). Si f et g commutent alors ils sont codiagonalisables (resp. cotrigonalisables), i.e. il existe une base commune de diagonalisation (resp. de trigonalisation) de f et g. [1], Sect. 4.1

¹ Tout usage commercial, en partie ou en totalité, de ce document est soumis à l'autorisation explicite de l'auteur.

3 Décomposition de Dunford et réduction de Frobenius.

Théorème 3.1 (décomposition de Dunford) — Soit $f \in L(E)$ un endomorphisme dont le polynôme caractéristique est scindé sur K. Alors il existe un couple (d, n) d'endomorphismes de E avec d diagonalisable, n nilpotent et tels que

- 1. f = d + n:
- 2. $d \cdot n = n \cdot d$. [1], Sect. 4.4

DÉFINITION 3.2 — Un endomorphisme $f \in L(E)$ est dit cyclique s'il existe $x \in E$ tel que $E = \{ P(f)(x); P \in K[X] \}$. [1], annexe B.1

THÉORÈME 3.3 — Etant donné $f \in L(E)$, il existe une suite F_1, F_2, \dots, F_r de sous-espaces vectoriels de E stables par f et tels que

- 1. $E = F_1 \oplus F_2 \oplus \cdots \oplus F_r$
- 2. Pour tout $1 \le i \le r$, la restriction f_i de f à F_i est un endomorphisme cyclique de F_i
- 3. Si P_i désigne le polynôme minimal de f_i alors pour tout $1 \le i \le r$, P_{i+1} divise P_i

De plus, la suite P_1, P_2, \dots, P_r ne dépend que de f et non du choix de la décomposition; on l'appelle suite des invariants de similitude de f. [1], Sect. B.1

DÉFINITION 3.4 — Soit $P(X) = X^n + a_{n-1}X^{n-1} + \cdots + a_1X + a_0$. On appelle matrice compagnon du polynôme P la matrice

$$C(P) = \begin{pmatrix} 0 & \cdots & \cdots & 0 & -a_0 \\ 1 & 0 & & \vdots & -a_1 \\ 0 & 1 & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & -a_{n-2} \\ 0 & \cdots & 0 & 1 & -a_{n-1} \end{pmatrix}$$

THÉORÈME 3.5 (RÉDUCTION DE FROBENIUS) — Notons P_1, P_2, \dots, P_r la suite des invariants de similitude de $f \in L(E)$ et pour tout $1 \le i \le r$, $C(P_i)$ la matrice compagnon de P_i . Alors il existe une base de E dans laquelle la matrice de f est donnée par

$$A = \begin{pmatrix} C(P_1) & 0 \\ & \ddots & \\ 0 & C(P_r) \end{pmatrix}$$

[1], Sect. B.1

Références

[1] Xavier Gourdon. Les maths en tête. Algèbre. Ellipses, 1994.