Leçon d'agrégation Utilisation de la dimension finie en analyse

Nicolas Lim

On travaillera toujours sur des espaces vectoriels réels.

1 Théorèmes de base

1.1 Notion de dimension : bases

Tout espace vectoriel de dimension finie admet des bases (de taille la dimension). Exemple: Les nombres algébriques forment un sous corps de \mathbf{R} .

Exemple: Bases de Haar

Dans un espace de probabilité (Ω, A, P) , une suite croissante de sous tribues $(B_n, n \in \mathbb{N})$ est appelée système de Haar si B_n est engendrée par une partition de Ω en n+1 événements de probabilité non nulle. On construit alors une base de Haar sur $(B_n, n \in \mathbb{N})$.

Théorème: Toute base orthonormale $(U_n, n \in \mathbb{N})$ d'un \mathbb{L}^2 telle que $U_0 = 1$ et $\forall n \ \mathbb{E}^{B_n}(U_{n+1}) = 0$ si $B_n = \sigma(U_0, ..., U_n)$ est nécessairement une base de Harr.

1.2 Le théorème de Riesz

 ${\bf Th\'{e}or\`{e}me}\colon {\bf La}$ boule unité fermée d'un evn E est compacte ssi E alors F de dimension finie.

Une première application: Soit F est ss-ev strict de $C^1([0,1], \mathbf{R})$ fermé est de dimension finie.

1.3 Equivalence des normes

Toutes les normes sont équivalents en dimension finie. Ce n'est plus le cas en dimension infini.

Exemple: Tout Banach de dimension infinie (E, ||.||) peut être muni d'une norme non complète continue par rapport à ||.||.

2 Le théorème de Brouwer

2.1 Énoncé

Toute fonction continue de V dans lui-même admet un point fixe si V est un compact convexe d'un evn de dimension finie.

2.2 Théorème de KKM

Définition: E un ev A est dit finiment fermé si son intersection avec tout ss-ev de dimension finie est fermé dans cet ss-ev.

Soit X inclus dans $E, G: X \to 2^E$ est dite KKM si $\forall x_1, ..., x_n$ de X^N l'enveloppe convexe de $x_1, ..., x_n$ est dans $\cup G(x_i)$.

Si $\forall x \in X \ G(x)$ est finiment fermé alors $\{G(x)|x \in X\}$ possède la propriété d'intersection finie.

Application : Soit X et Y deux compacts convexes non vide de E et F evt. Soit $f: X \times Y \to \mathbf{R}$ telle que

- $-y \rightarrow f(x,y)$ est sci et quasi convexe
- $-x \rightarrow f(x,y)$ est scs et quasi concave

alors

$$\max_{x} \min_{y} f(x, y) = \min_{y} \max_{x} f(x, y)$$

3 Opérateur compact

3.1 Définitions et propriétés

Soit E et F deux Banachs, on dit que $T:E\to F$ est dit compact si l'image de toute boule de E est relativement compact.

T est compact ssi T^* est compact.

Si T est compact, il est limite uniforme d'applications de rang fini (application : démonstration du théorème de Schauder).

Théorème: Soit T compact de E dans lui-même:

- $\, \ker (I T)$ est de dimension finie
- $\Im(I-T)$ est fermée et $\Im(I-T) = \ker(I-T^*)^\perp$
- $-\ker(I-T) = \{0\} \iff \Im(I-T) = E$
- $-\dim \ker(I-T) = \dim \ker(I-T^*)$

3.2 Opérateurs compacts autoadjoints

Ici on travaille dans H espace Hilbert. On dit que T est autoadjoint s'il est son propre adjoint.

Théorème: H admet alors une base Hilbertienne de vecteurs propres de T. De plus si λ est valeur propre non nulle alors elle est ponctuelle et l'éspace propre associé est de dimension finie.

Application: états propres des Hamiltoniens en mécanique quantique.