Espaces L^p , $1 \le p \le \infty$

1 Présentation des L^p

- Définition de \mathcal{L}^p , L^p , \mathcal{L}^∞ , L^∞ , en remarque, on identifie... [3]
- Hölder, Minkowski, TCD, Riesz-Fischer [3]
- Densité des fonction en escalier, des continues à support compacts, des \mathcal{C}^{∞} à support compact, inégalité de Hardy, séparabilité de L^p , pas de L^{∞} . [3, 1]

2 Relation entre les L^p

- Dualité : théorème de représentation de Riesz [1], L^p est reflexif (ou pas) , L^1 n'est pas un dual [7]
- Inclusion $L^{p_1} \subset L^{p_2}$ [6], théorème de Grothendieck [5]

3 Le cas L^2

- Hilbert, produit scalaire, projection, minimisation... [1]
- Transformée de Fourrier dans L^2 [6], vecteurs propres de la transformée de Fourrier.

4 Martingales et L^p

- définition d'uniformément intégrable, de martingales fermé... [4]
- Convergence dans L^1 , dans L^p , [2, 4]

Références

- [1] H. Brézis. Analyse Fonctionnelle. Dunod, 1999.
- [2] P.-A. Meyer C. Dellacherie. Probabilités et potentiels, théorie des martingales. Hermann, 1980.
- [3] J.-P. Marco. Analyse pour la licence. Dunod, 2è edition, 2002.
- [4] J.-Y. Ouvrard. Probabilités 2, master, agregation. Cassini, 2è edition, 2004.
- [5] W. Rudin. Analyse fonctionnelle. Ediscience international, 1995.
- [6] W. Rudin. Analyse réelle ou complexe. Dunod, 1998.
- [7] N. Tosel S. Gonnord. Topologie et analyse fonctionnelle. Ellipses, 1996.